ON PRODUCT OF RANGE QUATERNION HERMITIAN MATRICES

K. GUNASEKARAN
Ramanujan Research centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam-612 002, India.

S. SRIDEVI*

Ramanujan Research centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam - 612 002, Tamil Nadu, India.
(Received On: 07-06-16; Revised \& Accepted On: 23-06-16)

Abstract

In this paper we discuss the product of q-EP matrices are discussed.
Keywords: Moore-Penrose inverse, q-EP matrix, product of $q-E P$.

INTRODUCTION

Through we shall deal with nxn quaternion matrices [7]. Let A^{*} denote the conjugate transpose of A . Let A^{-}be the generalized inverse of A satisfying $A A^{-} A$ and z be the Moore-Penrose of A[6]. Any matrix $A \in H_{n X n}$ is called q-EP (2) if $R(A)=R\left(A^{*}\right)$ and his called $q-E P_{r}$, if A is $q-E P$ and $r k(A)=r$, where $N(A), R(A)$ and $r k(A)$ denote the null space, range space and rank of A respectively. It is well known that sum and sum of parallel summable q-EP matrices are qEP [3]. In general the product of symmetric, Hermitian, normal and EP respectively. Similarly, the product of q-EP matrices need not be q-EP. For instance

$$
\begin{aligned}
\text { Let } \mathrm{A} & =\left(\begin{array}{cc}
1 & 1+i+j+k \\
1-i-j-k & 2
\end{array}\right) \\
\mathrm{B} & =\left(\begin{array}{cc}
3 & 1+2 i+3 j+4 k \\
1-2 i-3 j-4 k & 4
\end{array}\right)
\end{aligned}
$$

A is $q-E P$ and B is $q-E P$.

$$
\mathrm{AB}=\left(\begin{array}{cc}
13-4 j-2 k & 5+6 i+7 j+4 k \\
5-7 i-9 j-11 k & 18+2 i+4 k
\end{array}\right) \text { is not q- EP }
$$

Theorem 1.1: Let A_{1} and $A_{n}(n>a)$ be $q-E P_{r}$ matrices and let $A=A_{1} A_{2} A_{3} \ldots \ldots A_{n}$. Then the following statements are equivalent:
(i) A is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$
(ii) $\mathrm{R}\left(\mathrm{A}_{1}\right)=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}\right)$ and $\mathrm{rk}(\mathrm{A})=\mathrm{r}$
(iii) $\mathrm{R}\left(\mathrm{A}_{1}{ }^{*}\right)=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}{ }^{*}\right)$ and $\mathrm{rk}(\mathrm{A})=\mathrm{r}$

Proof:

(i) \Leftrightarrow (ii): Since A_{1} and A_{n} are $q-E P_{r}$, therefore $R\left(A_{1}\right)=R\left(A_{1}{ }^{*}\right)$ and $R\left(A_{n}\right)=R\left(A_{n}{ }^{*}\right)$. Let $A=A_{1} A_{2} A_{3} \ldots \ldots . A_{n}$.

Since $A_{1}, A_{2}, A_{3}, \ldots \ldots . . A_{n}$ are q-EP
$\Rightarrow A=A_{1} A_{2} A_{3} \ldots \ldots . . A_{n}$

$$
\begin{aligned}
& \mathrm{R}(\mathrm{~A}) \subseteq \mathrm{R}\left(\mathrm{~A}_{1}\right) \text { and } \mathrm{rk}(\mathrm{~A})=\mathrm{rk}\left(\mathrm{~A}_{1}\right) \\
& \quad \Rightarrow \mathrm{R}(\mathrm{~A})=\mathrm{R}\left(\mathrm{~A}_{1}\right) .
\end{aligned}
$$

Also $A^{*}=\left(\mathrm{A}_{\mathrm{n}}{ }^{*}\right)\left(\mathrm{A}_{\mathrm{n}-1}{ }^{*}\right) \ldots \ldots \ldots . .\left(\mathrm{A}_{1}{ }^{*}\right)$
$\Rightarrow R\left(A^{*}\right) \subseteq R\left(A_{n}{ }^{*}\right)$ and $\operatorname{rk}(A)=\operatorname{rk}\left(A_{n}\right)=r$
$\Rightarrow \operatorname{rk}\left(\mathrm{A}^{*}\right)=\operatorname{rk}\left(\mathrm{A}_{\mathrm{n}}{ }^{*}\right)=\mathrm{r}$
Therefore,

$$
\mathrm{R}\left(\mathrm{~A}^{*}\right)=\mathrm{R}\left(\mathrm{~A}_{\mathrm{n}}{ }^{*}\right)
$$

Now,
A is $q-E P_{r} \Leftrightarrow R(A)=R\left(A^{*}\right)$ and $r k(A)=r \quad$ (By definition $\left.q-E P[2]\right)$

$$
\begin{aligned}
& \Leftrightarrow R\left(A_{1}\right)=R\left(A_{n}{ }^{*}\right) \\
& \Leftrightarrow R\left(A_{n}^{*}\right)=R\left(A_{n}\right) \\
& \Leftrightarrow R\left(A_{1}\right)=R\left(A_{n}\right) \text { and } \operatorname{rk}(A)=r
\end{aligned}
$$

(ii) \Leftrightarrow (iii):
$\mathrm{R}\left(\mathrm{A}_{1}\right)=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}\right)$
$\Leftrightarrow \mathrm{R}\left(\mathrm{A}_{1}{ }^{*}\right)=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}\right)^{*}=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}{ }^{*}\right)$
$\Leftrightarrow \mathrm{R}\left(\mathrm{A}_{1}{ }^{*}\right)=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}{ }^{*}\right)$
Hence the theorem
Corollary 1.2: Let A and B are $q-E P_{r}$ matrices. Then $A B$ is $q-E P_{r} \Leftrightarrow r k(A B)=r$ and $R(A)=R(B)$
Proof: Proof follows from theorem (1.1) for the product of two q-EPr matrices A and B.
Remarks 1.3: In the corollary both the conditions that $r k(A B)=r$ and $R(A)=R(B)$ are essential for the product of two $\mathrm{q}-\mathrm{EPr}$ matrices to be $\mathrm{q}-\mathrm{EPr}$. This can be seen in the following example.

Example 1.4:

Let $\mathrm{A}=\left(\begin{array}{cc}1 & k \\ -k & 0\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}-1 & -k \\ k & 0\end{array}\right) \Rightarrow \mathrm{AB}=\left(\begin{array}{cc}-2 & -k \\ k & -1\end{array}\right)$
A is $q-E P$ and B is $q-E P$., then $A B$ is $q-E P \Leftrightarrow r k(A B)=2$ and $R(A)=R(B)$

Example 1.5:

$$
\text { Let } \begin{aligned}
\mathrm{A} & =\left(\begin{array}{cc}
1 & 1+i+j+k \\
1-i-j-k & 2
\end{array}\right) \\
\mathrm{B} & =\left(\begin{array}{cc}
3 & 1+2 i+3 j+4 k \\
1-2 i-3 j-4 k & 4
\end{array}\right)
\end{aligned}
$$

A is $q-E P$ and B is $q-E P . R(A) \neq R(B)$. Then

$$
\mathrm{AB}=\left(\begin{array}{cc}
1-\boldsymbol{3} j-2 k & 5+6 i+7 j+5 k \\
5-7 i-9 j-11 k & 18+2 i+4 k
\end{array}\right) \text { is not } q-E P
$$

$A B$ is not $q-E P$ and $\operatorname{rk}(A B)=2$
Theorem 1.6: Let $r k(A B)=r k(B)=r_{1}$ and $r k(B A)=r k(A)=r_{2}$. If $A B, B$ are $q-E P_{r 1}$ and A is $q-E P_{r 2}$ then $B A$ is $q-E P_{r 2}$
Proof: Since $\operatorname{rk}(B A)=r k(A)=r_{2}$, It is enough to show that $N(B A)=N\left((B A)^{*}\right)$ to prove BA is $q-E P_{r 2}$
Now, $N(A) \subseteq N(B A)$ and $r k(B A)=r k(A)$
$\Rightarrow \mathrm{N}(\mathrm{A})=\mathrm{N}(\mathrm{BA})$
Also, $N(B) \subseteq N(A B)$ and $r k(A B)=r k(B)$
$\Rightarrow \mathrm{N}(\mathrm{B})=\mathrm{N}(\mathrm{AB})$

$$
\begin{aligned}
\text { Now } \mathrm{N}(\mathrm{BA}) & =\mathrm{N}(\mathrm{~A}) \\
& =\mathrm{N}\left(\mathrm{~A}^{*}\right) \\
& \subseteq \mathrm{N}\left(\mathrm{~B}^{*} \mathrm{~A}^{*}\right) \\
& =\mathrm{N}(\mathrm{AB}) \\
& =\mathrm{N}(\mathrm{~B}) \\
& =\mathrm{N}\left(\mathrm{~B}^{*}\right) \\
& \subseteq \mathrm{N}\left(\mathrm{~A}^{*} \mathrm{~B}^{*}\right) \\
& \left.=\mathrm{N}(\mathrm{BA})^{*}\right) \\
\mathrm{N}(\mathrm{BA}) \mathrm{s} & \left.\subseteq \mathrm{~N}(\mathrm{BA})^{*}\right)
\end{aligned}
$$

Further $\operatorname{rk}(B A)=r k(B A)^{*}$

$$
\Rightarrow \mathrm{N}(\mathrm{BA})=\mathrm{N}\left((\mathrm{BA})^{*}\right)
$$

Thus, BA is $\mathrm{q}-\mathrm{EP}_{\mathrm{r} 2}$
Hence the theorem.
Lemma 1.7: $A, B \in H_{n \times n}$ be of rank r.
(i) $\operatorname{rk}\left(\mathrm{AA}^{*}\right)=\operatorname{rk}\left(\mathrm{A}^{*} \mathrm{~A}\right)$
(ii) $\operatorname{rk}(\mathrm{AB})=\operatorname{rk}(\mathrm{B})-\operatorname{dim}\left[N(A)-N\left(B^{*}\right)^{*}\right]$

If A and B are $q-E P_{r}$ matrices and $A B$ has rank r, then $B A$ has rank r.
Proof: By theorem [1], $\operatorname{rk}(A B)=\operatorname{rk}(B)-\operatorname{dim}\left(N(A) \cap N\left(B^{*}\right) \perp\right.$

$$
\text { Since } \begin{aligned}
& \operatorname{rk}(A B)=r k(B)=r \\
& N(A) \bigcap N\left(B^{*}\right) \perp=\{0\} \Leftrightarrow N(A) \cap N(B) \perp=\{0\} .\left[\text { Since } B \text { is } q-E P_{r}\right] \\
\Rightarrow & N(A) \perp \bigcap N(B)=\{0\} \\
\Rightarrow & N\left(A^{*}\right) \perp \bigcap N(B)=\{0\} \quad\left[\text { Since } A \text { is } q-E P_{r}\right]
\end{aligned}
$$

Now, $\operatorname{rk}(B A)=\operatorname{rk}(B)(A)$

$$
\begin{aligned}
& =\operatorname{rk}(\mathrm{B})(\mathrm{A}) \\
& =\operatorname{rk}(\mathrm{A})-\operatorname{dim}\left(\mathrm{N}(\mathrm{~B}) \bigcap \mathrm{N}\left(\mathrm{~A}^{*}\right)^{\perp}\right) \\
& =\operatorname{rk}(\mathrm{A})-0 \\
& =\operatorname{rk}(\mathrm{A})
\end{aligned}
$$

That is $r k(B A)=r$
Hence the lemma.

Example 1.8:

$$
\mathrm{A}=\left(\begin{array}{cc}
1 & i+j \\
-i-j & 0
\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}
0 & k \\
-k & 0
\end{array}\right)
$$

A and B are $q-E P_{r}$ matrices
$\therefore \mathrm{rk}(\mathrm{A})=\mathrm{r}, \mathrm{rk}(\mathrm{B})=\mathrm{r}$
$\mathrm{AB}=\left(\begin{array}{cc}j-i & k \\ 0 & j-i\end{array}\right)$
$\therefore \mathrm{rk}(\mathrm{AB})=\mathrm{r}$
Then $\mathrm{BA}=\left(\begin{array}{cc}-j+1 & 0 \\ -k & -j+i\end{array}\right)$

$$
r k(B A)=r
$$

Theorem 1.9: If A, B and $A B$ are $q-E P_{r}$ matrices then $B A$ is $q-E P_{r}$.
Proof: Since A, B are q-EPr matrices and $\operatorname{rk}(A B)=r$, by lemma(1.7), $\operatorname{rk}(B A)=r$. Now the theorem follows from theorem (1.6) for $r_{1}=r_{2}=r$.

Hence the theorem.

Example 1.10:

$$
\begin{aligned}
& \mathrm{A}=\left(\begin{array}{ccc}
0 & k & j \\
-k & 0 & 0 \\
-j & 0 & 0
\end{array}\right) \\
& \mathrm{B}=\left(\begin{array}{ccc}
0 & -k & -\boldsymbol{j} \\
k & 0 & 0 \\
j & 0 & 0
\end{array}\right)
\end{aligned}
$$

A and B are $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ Matrices

$$
\mathrm{AB}=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -1 & -i \\
0 & i & -1
\end{array}\right)
$$

And AB is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ matrices

$$
\mathrm{BA}=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -1 & -i \\
0 & i & -1
\end{array}\right)
$$

So, if A, B and AB are $\mathrm{Q}-\mathrm{EP}$ matrices then BA is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$
Corollary 1.9: Let A, B be $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$ matrices. Then the following statements are equivalent
(i) AB is qEP_{r}
(ii) $(\mathrm{AB})^{\dagger}$ is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$
(iii) $\mathrm{A}^{\dagger} \mathrm{B}^{\dagger}$ is $\mathrm{q}-\mathrm{EP}_{r}$
(iv) $\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$ is $\mathrm{q}-\mathrm{EP}_{\mathrm{r}}$

REFERENCE

1. Ben Isreal .A and Greville. TNE: Generalized Inverses, Theory and applications; Wiley and Sons, New York (1974).
2. KatzT.J and Pearl M.H: on Epre and Normal Eprematrice J. res. Nat. Bur. Stds. 70B, 47-77(1966).
3. Gunasekaran.K and Sridevi.S: On Range Quaternion Hermitian Matrices Inter; J; Math., Archieve-618, 159-163.
4. Gunasekaran.G and Sridevi.S: On Sums of Range Quaternion Hermitian Matrices; Inter; J. Modern Engineering Res-.5, ISS.11. 44 - 49(2015).
5. Marsagila.G and Styan G.P.H: Equalities and Inequalities for rank of Matrices; lin. Alg. Appl., 2, 269-292 (1974).
6. Rao.CR and Mitra.SK: Generalized inverse of matrices and its Application: Wiley and Sons, Newyork (1971)
7. Zhang.F, Quaternions and matrices of quaternions, linear Algebra and its Application, 251 (1997), 21 - 57.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2016, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

