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ABSTRACT 
In this paper we present some results on the reverse derivations in prime rings with right ideals. We prove that if a 
reverse derivation d acts as a homomorphism or an antihomomorphism on a nonzero right ideal U of a prime ring R, 
then d = 0. Also, we show that if [d(x), x] = 0 or [d(x), d(y)]=0 or [d(x), d(y)] = [x,y] for all x,y ∈U, then R is 
commutative.  
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INTRODUCTION 
 
Mecdonald [3] established some group-theoretic results in terms of inner derivations. Bell and Kappe [1] studied the 
analogous results for rings in which derivations satisfy certain algebraic conditions. Bell and Moson [2] proved the 
commutativity of near-rings and rings using strong commutativity-preserving derivations.  We prove that if a reverse 
derivation d acts as a homomorphism or an antihomomorphism on a nonzero right ideal U of a prime ring R, then d = 0. 
Also, we show that if [d(x), x] = 0 or [d(x), d(y)] = 0 or [d(x), d(y)] = [x, y] for all x, y ∈U, then R is commutative.  
 
PRELIMINARIES 
 
Throughout this paper R will denote a prime ring and Z its Centre. A ring R is prime if whenever A and B are ideals of 
R such that AB = 0 then either A = 0 or B = 0. Also a ring R is called prime if xay=0 implies x = 0 or y = 0 for all x, y, a 
in R. A ring R is said to be n-torsion free, if there exists a positive integer n such that nx = 0 implies x = 0 for all 

Rx∈ . An additive mapping RRd →:  is called a derivation, if )()()( yxdyxdxyd +=  for all Ryx ∈, . An 
additive mapping d : R → R is a reverse derivation if d(xy) = d(y)x + yd(x) for all x, y ∈ R. We use the identities  
 [xy, z] = [x, z]y + x[y, z], [x, yz] = [x, y]z + y[x, z] 
 
To prove the main results we require the following results [1]: 
 
Lemma 1:   

(i)  Let U be a subring of a ring R and let d be a derivation of R which acts as a homomarphism on U. Then 
d(x)x(y-d(y)) = 0 for all x, y ∈ U. 

(ii)  Let V be a right ideal of R and d be a derivation of R acting as an antihomomorphism of V. Then d(x)y            
[r, d(x)]=0 for all x, y∈V and r∈R. 

 
Theorem 1: Let R be a semiprime ring. If d is a derivation of R which is either an endomorphism or an 
antiendomorphism, then d = 0. 
 
Theorem 2: Let R be a prime ring and U a nonzero right ideal of R. If d is a derivation of R which acts as a 
homomarphism or an antihomomorphism on U, then d = 0 on R. 
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Now we prove the following results: 
 
Theorem 3: Let R be a prime ring and U a nonzero right ideal of R. Suppose d: R → R is a reverse derivation of R,  

(i) If d acts as a homomorphism on U, then d = 0 on R. 
(ii) If d acts as an antihomomorphism on U, then d = 0 on R. 

 
Proof: (i) If d acts as a homomorphism on U, then we have  

d(y) d(x) = d(yx) = d(x)y + xd(y), for all x, y ∈ U.                                                                          (1) 
 
We replace y = yx in equation (1), then  

d(yx)d(x) = d(x)yx + xd(yx), for all x, y ∈ U.                                                                           (2) 
 
By multiplying (1) with d(x) on right side and using d is a homomorphism on U, we get 
 d(yx)d(x) = d(x) yd(x) +xd(y)d(x). 
 d(yx)d(x) = d(x) yd(x) + xd(yx)                                                               (3) 
 
By combining equations (2) and (3), we get 
 d(x)yx = d(x)yd(x), for all x, y ∈ U                                                              (4) 
 
i.e.,  x = d(x). 
 
So, (d(x) – x) d(x) = 0. 
 
Thus d (x2) = xd(x). 
 
Since d is a reverse derivation, we have d(x)x = 0. 
 
By linearizing x, we obtain 
 d(x)y + d(y)x = 0, for all x, y ∈ U.                                                              (5) 
 
We replace y by xy in equation (5), then we have 
 d(y) xx = 0, for all x, y ∈ U                                                              (6) 
 
If we right multiply by x in equation (5), we get  
 d(x)yx + d(y)xx = 0, for all x, y ∈ U. 
 
From the above equations, we obtain 
 d(x)yx = 0, for all x, y ∈ U. 
 
By substituting y by ys in this equation, we get d(x) ysx = 0, for all x,y ∈ U and s ∈ R. Thus for each x ∈ U, the 
primeness of R implies that either d(x)y=0 or x=0. But x = 0 also implies that  
 d(x)y = 0, for all x, y ∈ U.                                                               (7) 
 
If we replace x by xr in equation (7), we get 
 d(xr)y = 0, for all x,y ∈ U and r ∈ R. 
 
Then  d(r)xy + rd(x)y = 0. So we get 
 d(r)xy = 0, for all x,y ∈ U and r ∈ R                                                             (8) 
 
Again we replace x by xs in equation (8). We have 
 d(r)xsy = 0, for all x, y ∈ U and s, r∈ R. 
i.e. d(r) x R y = 0, for all x, y ∈ U and s, r ∈ R. 
 
Since R is prime, it follows that 

d(r)x = 0, for all x, y ∈ U and r ∈ R.                                                                           (9) 
 
In equation (9), we substitute r by rs. Then we have 
 d(rs)x = 0 for all x∈ U and r, s ∈ R 
i.e. d(s)rx + sd(r)x = 0, for all x ∈ U and r, s ∈ R. So we get 
 d(s)rx = 0, for all x∈ U and r, s ∈ R.                                                                         (10) 
i.e., d(s)R x = 0, for all x ∈ U and r, s ∈ R. 
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Since R is prime, either d(s) = 0 or x = 0. But x = 0 also implies that d(s) = 0, for all s∈ R, then d = 0 on R. 
 
(ii) Suppose d acts as an antihomomorphism on U. By our hypothesis, we have 
 d(xy) = d(y) d(x) = d(y)x + y d(x), for all x, y ∈ U.                                                                                     (11) 
 
By substituting y by xy in equation (11), then 
 d(xy)d(x) = d(x(xy)), for all x, y ∈ U. 
       = d((xx)y) 
 
 d(xy) d(x) = d(y)xx + yd(xx), for all x, y ∈ U.                                                                                     (12) 
 d(xy) d(x) = d(y)x d(x) + y d(x) d(x), for all x, y ∈ U                                                                                     (13) 
 
By combining equations (12) and (13). Then 
 d(y)x d(x) = d(y)xx, for all x, y ∈ U.                                                                                       (14) 
 
i.e. d(x) = x, for all x ∈ U. 
 
So (d(x) – x) = 0, for all x ∈ U. 
 
We right multiply this equation with d(x). Then 
 (d(x) – x) d(x) = 0, for all x ∈ U. 
 
Thus d(x2) = x d(x), for all x ∈ U. 
 
Since d is a reverse derivation, we have d(x) x = 0. 
 
By linearazing x, we obtain 
 d(x)y + d(y) x = 0, for all x, y ∈ U.                                                            (15) 
 
We replace y by xy in equation (15), then we get d(y)xx = 0. So, we have obtained equation (6). The remaining proof is 
same as in proof of (i).  
 
 Theorem 4: Let R be a 2-torsim free prime ring, U a nonzero right ideal of R and d be a nonzero reverse derivation of 
R. If [d(x),x] = 0 for all  x ∈ U, then R is commutative. 
 
Proof: We have [d(x), x] = 0 for all x ∈ U.                                                                          (16) 
 
By linearizing x, in equation (16), we obtain 
 [d(x), y] + [x, d(y)] = 0, for all x, y ∈ U.                                                           (17) 
 
By substituting y with yx in equation (17), we get 
 [d(x), yx] + [x, d(yx)] = 0, for all x, y ∈ U. 
 [d(x), y]x + y[d(x), x] + [x, d(x)y] + [x, xd(y)] = 0, we have  

[d(x), y]x + [x, d(x)]y + d(x) [x, y] + [x, x] d(y) + x[x, d(y)] = 0,  
then we get 
 d(x)[x, y] = 0, for all x, y ∈ U.                                                            (18) 
 
We replace y by yz in equation (18), we have 
 d(x) [x, yz] = 0, for all x, y, z ∈ U. We get 
 d(x) [x, y]z + d(x)y [x, z] = 0, then 
 d(x)y [x, z] = 0, x, y, z ∈ U according to (18). 
 
Again by substituting y by yr in this equation, we have 
 d(x) yr[x, z] = 0, for all x, y, z ∈ U and r ∈ R. 
 
Since R is prime, either d(x)y = 0 or [x, z] = 0. If d(x)y = 0, then d(U)U={0}.  
 
But d(U)U ≠ {0}, since d ≠ 0, U ≠ 0 and R is prime. Thus [x, z] = 0 for all x, z ∈ U. So U is commutative. 
 
Hence R is commutative.  
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Theorem 5:  Let R be a 2-torsion free prime ring, U be a nonzero right ideal of R and d be a nonzero reverse derivation 
of R. If [d(x), d(y)] = 0 for all x,y ∈ U, then R is commutative. 
 
Proof: we have [d(x), d(y)] = 0.                                                             (19) 
 
By taking y = yx in equation (19), we have 
 [d(x), d(yx)] = 0, for all x, y ∈ U. 
 [d(x), d(x)y + xd(y)] = 0. 
 [d(x), d(x)y] + [d(x), d(x)]y + x[d(x), d(y)] + [d(x),x] d(y) = 0. We get 
 d(x) [d(x),y] + [d(x),x]d(y) = 0 for all x, y ∈ U.                                                          (20) 
 
By substituting d(y) with d(z)y in equation (20), we have 
 d(x) [d(x),y] + [d(x),x] d(z)y = 0, for all x, y, z ∈ U.                                                                        (21) 
 
Again we take y by yr in equation (21). Then we have 
 d(x)[d(x), yr] + [d(x), x] d(z) yr = 0, for all x, y, z ∈ U and r ∈ R. 
 d(x)y [d(x),r] + d(x)[d(x),y]r + [d(x),x] d(z) yr = 0.                                                                        (22) 
 
From equations (21) and (22), we get 
 d(x)y[d(x),r] = 0, for all x, y, z ∈ U and r ∈ R. 
 d(x) U [d(x),r] = {0}. 
 d(x) U R[d(x),r] = {0}. 
 
Since R is prime we have either d(x) U = {0} or [d(x), r] = 0. 
 
Since d ≠ 0, U ≠ {0} and R is prime it follows that d(x) U ≠ 0. 
 
So [d(x), r] = 0. Then d(x)∈ Z, centre of R. Hence [d(x), x] = 0, for all x∈ U. 
 
From Theorem 4, R is commutative. 
 
Theorem 6: Let R be a 2-torsion free prime ring, U be a nonzero right ideal of R and d be a nonzero reverse derivation 
of R. If [d(x), d(y)] = [x, y] for all x, y ∈ U, then R is commutative. 
 
Proof: We have [x, y] = [d(x), d(y)], for all x, y ∈ U.                                                                         (23) 
 
By taking y by yz in the equation (23), we have 
 [x, yz] = [d(x), d(yz)] 
 y[x, z] + [x, y]z = [d(x), d(z)y + zd(y)]. 
 y[x, z] + [x, y]z = [d(x), d(z)y] + [d(x), zd(y)]. 
 y[x, z] + [x, y]z = d(z) [d(x), y] + [d(x), d(z)]y + z[d(x), d(y)] + [d(x),z]d(y). 
 
From Lemma ( [2] Lemma 5(ii)), we obtain 
 d(z)[d(x), y] + [d(x), z]d(y) = 0.                                                            (24) 
 
We put z = x in this equation. Then 

d(x)[d(x), y] + [d(x),x]d(y) = 0. This is equation (20). The remaining proof is similar to the proof of Theorem 5. 
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