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ABSTRACT 
In this paper we introduce the notion of β- bi-near subtraction semigroup. Also we give characterizations of β- bi-near 
subtraction semigroup. 
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1. INTRODUCTION 
  
In 2007, Dheena [1] introduced Near Subtraction Algebra, Throughout his paper by a Near Subtraction Algebra, we 
mean a Right Near Subtraction Algebra. For basic definition one may refer to Pillz [4]. In this paper we shall obtained 
equivalent conditions for regularity in terms of β- Bi near subtraction semigroup.  
 
2. PRELIMINARIES      
 
A non-empty subset X together with two binary operations “−“   and “.” is said to be subtraction semigroup If (i) (X,−) 
is a subtraction algebra (ii) (X, .) is a semi group (iii) x(y−z)=xy−xz  and (x−y)z= xz−yz  for every x, y, z∈X. A non-
empty subset X together with two binary operations “−“and “.” is said to be near subtraction semigroup if (i) (X,−) is a 
subtraction algebra (ii) (X, .) is a semi group and (iii) (x−y)z = xz−yz   for every x, y, z∈X.  A non-empty subset X is 
said to be nil-near subtraction semigroup if there exists a positive integer k˃1 such that ak=0 Which implies that xa=0 
where x=ak-1. 

 
3. β-BI NEAR SUBTRACTION SEMIGROUP 

 
Definition 3.1: A non-empty subset X together with two binary operations“-“and “.” Is said to be β- bi near 
subtraction semigroup. Then X is the both boolean and weak commutative near subtraction semigroup   
 
Example 3.2: Let X= {0, a, b, 1} in which “-“ and  “.” be defined by 
 

- 0 a b c 

  

. 0 a b c 
0 0 0 0 0 0 0 0 0 0 
a a 0 c b a 0 a 0 a 
b b 0 0 0 b 0 0 b b 
c c 0 c 0 c 0 a b c 

 
Then X is a β- bi near-subtraction semi group 
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Lemma 3.3: If X is a β- bi near subtraction semigroup then xy=xyx for each x, y∈X. 
 
Proof: Since X is β- bi near subtraction semigroup. Claim: xy=xyx for each x, y in X. 
 
Let x, y in X. Since X is Boolean near subtraction semigroup. By definition, x2 = x for all x in X and y2 = y for all y in 
X. Now, xy = (xy)2 = (xy) (xy) = xyyx = xy2x = xyx. 
 
Theorem 3.4: Let X be a β- bi near subtraction semigroup. Each of the following statement implies that X is a strong 
s2- near subtraction semigroup. 

(i) X is a zero symmetric 
(ii) X is distributive 
(iii) X is subcommutative. 
(iv) X is of Type II 
(v) X is commutative 
(vi) aX=aXa for all a in X . (X  is a P1 near subtraction semigroup) 

 
Proof:   

(i) Since X is Boolean is isno nilpotent elements. Since X=X0.Proposition 2.2.31 demands that X has (., IFP). Let 
a, b in X. Now (ab-aba)a=aba-aba2=aba-aba (since X is Boolean)=0. That is, (ab-aba)a=0. By using (*, IFP) 
property we get, a(ab-aba)=0. ab(ab-aba) = 0....(I) and aba(ab-aba) = 0...(2). From (1) and (2) we get        
ab(ab-aba)-aba(ab-aba) = 0. That is, (ab-ba)2 =0. Since X has no nilpotent element ab-aba = 0. Similarly we 
can prove aba-ab = 0. That is aba = ab. Hence X is strong s2 near subtraction semigroup.     

(ii) Since X is distributive X is zero symmetric. Therefore the result follows from (i). 
(iii) Let a∈ X. Since X is subcommutative Xa=aX. Therefore for any x∈X, there exists y∈X such that ax=ya. 

Therefore axa= (ax)a=(ya)a=ya2=ya [Since X is Boolean] = ax. Thus X is a Strong s2 near subtraction 
semigroup. 

(iv) Let X be a Type II near subtraction semigroup and X is also Boolean.. Let a, b in X. Then aba=aab=a2b=ab. 
That is, aba=ab. Thus X is a strong s2near subtraction semigroup. 

(v) Let X be commutative. It is subcommutative also. Hence the proof (iii). 
(vi) Let a∈ X. Since aX=aXa for any x∈X, there exists y∈X such that ax=aya. Therefore    
(vii) axa= (ax)a=(aya)a=aya2 =aya [Since X is Boolean] = ax. Thus X is a strong s2 near subtraction semigroup. 

 
Proposition 3.5: If X is a β- bi near subtraction semigroup then the following are true. 

(i) ab and ba ∈ E for all a, b ∈X. 
(ii) X is a p1 near subtraction semigroup. 

 
Proof: Since X is a β- bi near subtraction semigroup then xy=xyx for each x, y∈X. 

(i) Let a, b∈𝑋𝑋∗. Now (ab)2=abab =a(ba)b=a(bab)=a(ba)=aba=ab. That is (ab)2=ab. Consequently ab∈E for all     
a, b in X. In a similar fashion we get ba∈E for all a, b∈X.  

(ii) Let z∈aX. Then there exists a’∈X such that z=aa’=aa’a∈aXa. That is, z∈aXa. Therefore aX⊂aXa...(1) 
Obviously aXa⊂aX...(2). From (1) and (2), we have aX=aXa. Thus, X is a p1 near subtraction semigroup. 

        
4. RESULTS ON β BI NEAR SUBTRACTION SEMIGROUP 

 
Theorem 4.1: Homomorphic image of a β- bi near subtraction semigroup is also a β- bi near subtraction semigroup 
 
Proof: Let T be a homomorphic image of X where Π: T→R is a epimorphism of a β- bi near subtraction semigroup. 
Let t∈T, then t=Π(r) for some r in R. Now, t2=tt=Π(r) Π(r) =Π(r2) =Π(r)=t. There t is Boolean near subtraction 
semigroup. Let t1, t2, t3∈T, then t1=Π(r1), t2=Π(r2)  and  t3=Π(r3) for some r1, r2 r3 in R. Also, t1 t2 t3=Π(r1) Π(r2) Π(r3) = 
r1r2r3 = r1r3r2 = Π(r1) Π(r3) Π(r2) = t1 t3 t2. Therefore T is weak Commutative. Hence, T is also a β- bi near subtraction 
semigroup. 
 
Proposition 4.2: Let X be a s- β-bi near subtraction semigroup Then we have the following: 

(i) Every X-system is invariant 
(ii) Every left ideal of X is an ideal. 

 
Proof 

(i) If A is a X-system of X then XA ⊂ A(ie.,) an ∈ AX for all a∈X, n∈X we have an ∈ aX =Xa [Since X is sub-
commutative]=Xa2{Since X is left bipotent]. (ie.,) an ∈ Xa2. Which implies that an=n’a2 for some n’∈X. It 
follows that AX⊂A. Hence, X is invariant X-system. 

(ii) Let A be a left ideal of X. Then XA ⊂ A. (ie.,) A is an X-system of X [by(i)] we have AX⊂A. Hence, X is an 
ideal. 
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