The Congruence of \mathbf{k}-Curves

${ }^{1}$ H. Khosravi*, ${ }^{2}$ H. Golmakani and ${ }^{3}$ Elias. Faryad
${ }^{123}$ Department of Mathematics, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, 91735-413, Iran

Email: Khosravi@mshdiau.ac.ir, H.golmakani@mshdiau.ac.ir, Elias.Faryad@yahoo.com
(Received on: 16-10-11; Accepted on: 28-10-11)

Abstract

In this paper we introduce the conditions about congruence of K-curves then by using of this conditions stated congruence of curves and surfaces. We prove the conditions about congruence of two curves in \boldsymbol{R}^{2} and \boldsymbol{R}^{3} in different case and discuss congruence of two curves by using the concept of isometry, translation and rotation without using torsion and curvature.And we study half-curves that created the graphs of their conjunctions as follows;

Our purpose of invariant curve is half-curve or segment of curve that less than limited in one side.(see [3,7])
Keywords: Congruence Theory, Isometry, Rotation, Translation

1. INTRODUCTION:

In elementary differential geometry the condition about congruence of two curves has been considered. And with the extension of congruence of curves discuss of surface congruence stated in the world in the last time. In second reference the theorem of congruence of two curves in \mathbf{R}^{2} and \mathbf{R}^{3} are express as follows:
\mathbf{R} is the set of real numbers, $\mathbf{I}, \mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$ are an interval in $\mathbf{R}, \boldsymbol{\delta} \mathbf{I}$ is boundary of interval $\mathbf{I}, \boldsymbol{\tau}$ is torsion of a curve, $\boldsymbol{\kappa}$ is curvature a curve, \mathbf{v} is the parallel vector of a curve, E^{2} is Euclidian plane and $\mathbf{E}^{\mathbf{3}}$ is Euclidian space.

Definition1.1: The two curves α and $\beta: I \rightarrow \mathbf{E}^{3}$ are congruent if there is an isometry $\mathrm{F}: \mathbf{E}^{3} \rightarrow \mathbf{E}^{3}$ such that $\mathrm{F}(\beta(\mathrm{t}))=\alpha(\mathrm{t})$ for every t in I . (See [1, 3])

Theorem 1.2: If α and β : I $\rightarrow \mathbf{E}^{\mathbf{3}}$ are two curves such that $\left\|\alpha^{\prime}(\mathrm{t})\right\|=\left\|\beta^{\prime}(\mathrm{t})\right\|=1$ for every t in $\mathrm{I}, \boldsymbol{\kappa}_{\alpha}=\boldsymbol{\kappa}_{\beta}$ and $\boldsymbol{\tau}_{\alpha}= \pm \boldsymbol{\tau}_{\beta}$ then α and β are congruent. (see $[3,5]$)

Theorem 1.3: Suppose α and β : I $\rightarrow \mathbf{E}^{\mathbf{3}}$ are two curves such that
$\left\|\alpha^{\prime}(\mathrm{t})\right\|=\left\|\beta^{\prime}(\mathrm{t})\right\|=1$: for every t in $\mathrm{I}, \boldsymbol{\kappa}_{\alpha}=\boldsymbol{\kappa}_{\beta}>0, \boldsymbol{\tau}_{\alpha}= \pm \boldsymbol{\tau}_{\beta}$
and $v_{\alpha}=v_{\beta}>0$,then α and β are congruent. (see $[2,3]$)
Theorem 1.4: Suppose α and β : I $\rightarrow \mathbf{E}^{\mathbf{3}}$ are two arbitrary curves.
Let E_{1}, E_{2} and E_{3} is a frame field on α and F_{1}, F_{2} and F_{3} is a frame field on β,
if $\alpha^{\prime} . \mathrm{E}_{\mathrm{i}}=\beta^{\prime} . \mathrm{F}_{\mathrm{i}} \quad(1 \leq \mathrm{i} \leq 3)$ and $\mathrm{E}_{\mathrm{i}}{ }^{\prime} . \mathrm{E}_{\mathrm{j}}=\mathrm{F}_{\mathrm{i}}{ }^{\prime} . \mathrm{F}_{\mathrm{j}} \quad(1 \leq \mathrm{i}, \mathrm{j} \leq 3)$, then α and β are congruent. (see [3])
Corresponding author: ${ }^{1}$ H. Khosravi, *E-mail: Khosravi@mshdiau.ac.ir

Theorem 1.5: Suppose α and β : I $\rightarrow \mathbf{E}^{\mathbf{2}}$ are two curves such that
$\left\|\alpha^{\prime}(\mathrm{t})\right\|=\left\|\beta^{\prime}(\mathrm{t})\right\|=1$: for every t in I .
Then α and β in \mathbf{E}^{2} are congruent if and only if $\boldsymbol{\kappa}_{\alpha}= \pm \boldsymbol{\kappa}_{\beta}$. (see $[3,4,6]$)

2. THE RESULTS:

Definition 2.1: (Junction Point) Suppose $\alpha: I_{1} \rightarrow R^{2}$ and $\beta: I_{2} \rightarrow R^{2}$ are two segment curves or half-curves. In this case we say the unique point $p \in \delta I_{1} \cap \delta I_{2}$ is junction point if $\alpha(p)=\beta(p)$.

In simple words we say the points that created by conjunction of two half-curves or segment curves are junction points.
Definition 2.2: (Broken k-Curve) A continuous curve is called broken k-curved if it has k corner point and without closed region in its graph.

Definition 2.3: (Invariant 2-Curve) If α and β are two invariant curves such that of their conjunction in junction point that created a broken 1-curve or broken 2 -curve, we say it invariant 2 -curves and we show it with $\overline{\alpha \beta}$ notation.

In simple words invariant 2-curves are the same curved as follows;

Definition 2.4: (k-Curves by n) Suppose α is a curve we say α is k-curve by n if formed by k times invariant curves and we can see less than n times invariant 2- curves in its graph.

Definition 2.5: (invariant k-curve (k>2)) If $\alpha_{1}, \ldots, \alpha_{k}$ are k invariant curves and $\overline{\alpha_{1} \alpha_{1+1}}(i=1, \ldots, k-1)$ are invariant 2curves such that P_{i} is junction point for $\overline{\alpha_{1} \alpha_{1+1}}$, then broken (k-1)-curves $\overline{\alpha_{1} \alpha_{2} \ldots \alpha_{\mathrm{k}}}$ is called an invariant k-curves ,or , The α curve formed by k times invariant curves and its graph has ($k-1$) times invariant 2 -curves such that every two invariant 2-curves with disjoint junction point are common at most in one invariant curve.

Corollary 2.6: Every k-curve by n is not an invariant k -curve.
For example the following figure is a 3-curve by 3 but is not an invariant 3-curve.

Corollary 2.7: Every invariant k-curve is continuous. It is clear by definition of invariant k-curve.
Theorem 2.8: The union of two isometry is an isometry. (see $[3,8]$)
Theorem 2.9: (Invariant k-Curves Conformity) Suppose α and β are two invariant k-curves that α includes from k curves $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ and β includes from k-curves $\left\{\beta, \ldots, \beta_{k}\right\}$ then α on β is congruent if ; there is a translation F such that $\mathrm{F}(\alpha)=\beta$ or there is a rotation F such that $\mathrm{F}(\alpha)=\beta$ or there is an isometry F such that $\mathrm{F}(\alpha)=\beta$.

Proof: If the invariant curves of $\alpha_{\mathrm{i}}(\mathrm{i}=1,2,3 \ldots \mathrm{k})$ congruent on β_{i} by isometry G , then it is enough to put translation F equal G. (By the last theorem the union of two isometry is isometry).

Theorem 2.10: (khosravi-faryad theorem) Every two same shapes in $\mathbf{R}^{\mathbf{2}}$ are congruent by at most of two translations and one rotation.

Proof: Suppose S_{1} and S_{2} are two same shapes in \mathbf{R}^{2} such that are in different places. We will show that S_{1} and S_{2} are congruent by at most two translations and one rotation. We congruence the centroid of S_{1} and S_{2} by at most of two translations.

Let θ is the angle of between smallest surrounded rectangles S_{1} and S_{2}.
Now with rotation around in this point to measure of θ, the congruence is possible.
In other words every point of surrounded rectangle of S_{1} input to point of surrounded rectangle S_{2} with rotation to measure of θ, especially the region of S_{1} input to S_{2}.

Lemma 2.11: Every two same rectangular parallelepiped with the same centroid in $\mathbf{R}^{\mathbf{3}}$ are congruent at most by two rotations.

Proof: Suppose A and B are two same rectangular parallelepiped in \mathbf{R}^{3} with the same centroid.
Suppose S_{1} is a perpendicular sheet on four parallel ribs a_{1}, a_{2}, a_{3} and a_{4} from A.
There are four parallel ribs b_{1}, b_{2}, b_{3} and b_{4} in B such that have the same length with a_{1}, a_{2}, a_{3} and $a_{4} i . e .\left|a_{i}\right|=\left|b_{i}\right|(i=1,2$, $3,4)$.

Let S_{2} is a perpendicular sheet on b_{1}, b_{2}, b_{3} and b_{4}, with a rotation to measure angle of between two sheet normal vectors S_{1} and S_{2} around centroid this two sheets are congruent together.

Now located A and B in one direction i.e. $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}$ are parallel together.
Now we consider four rectangles of perpendicular ribs on $\mathrm{a}_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ from A and perpendicular ribs on $b_{i}(i=1,2,3,4)$ from B. These rectangles have the same center two by two. A and B are congruent with together by a rotation to measure angle of between these two rectangles around their centroid.

Theorem 2.12: (khosravi-faryad theorem) Every two same shapes in $\mathbf{R}^{\mathbf{3}}$ are congruent by at most three translations and two rotations.

Proof: Suppose S_{1} and S_{2} are the same shapes in $\mathbf{R}^{\mathbf{3}}$ and locates in different places.
At first by three translation, the centroid of S_{1} and S_{2} are congruent. Then by last lemma there are at most two rotations such that smallest surrounded rectangular parallelepiped of two shapes S_{1} and S_{2} are conformed, so S_{1} and S_{2} will be congruent.

Conjecture: Every two same shapes in $\mathbf{R}^{\mathbf{n}}$ are at most congruent by n translation and ($\mathrm{n}-1$) rotation.

3. ACKNOWLEDGMENTS:

The authors thank the research council of Mashhad Branch, (Islamic Azad University) for support.

4. REFERENCES:

[1] M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, 2003.
[2] W. Klingenberg, A course in differential geometry, Springer-Verlag.
[3] B. O'Neill Elementary differential geometry, Academic Press 1966.
[4] V. Berkovich. Analytic geometry over F1. Slides, 2011.
[5] R. Hartshorne. Algebraic Geometry. Grad. Texts in Math. 52, Springer-Verlag, New York, 1977.
[6] B. To"en and M. Vaqui'e. Au-dessous de Spec Z. Journal of K-Theory 1-64, 2008.
[7] Peter W. Michor: Topics in Differential Geometry. Graduate Studies in Mathematics, Vol. 93 American Mathematical Society, Providence, 2008.
[8] Ivan Kolár, Jan Slovák, Peter W. Michor: Natural operations in differential geometry. Springer-Verlag, Berlin, Heidelberg, New York, (1993), vi+434 pp., MR 94a:58004, ZM 782:53013.

