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ABSTRACT 
The purpose of this paper is to define and study a new class of set called Nano (1, 2)* generalized-regular closed sets 
in nano bitopological spaces. Basic properties of nano (1, 2)* generalized regular closed sets are analyzed. The new 
notion of nano (1, 2)* generalized-regular closure and their relation with already existing well known sets are also 
investigated. 
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Interior, Nano (1, 2)* regular closed sets. 
 
 
1. INTRODUCTION  
 
In 1970, Levine [5] introduced the concept of generalized closed sets as a generalization of closed sets in topological 
spaces. Later on N.Palaniappan [7] studied the concept of regular generalized closed set in a topological space. In 2011, 
Sharmistha Bhattacharya [8] have introduced the notion of generalized regular closed sets in topological space. The 
notion of nano topology was introduced by Lellis Thivagar [6]. In 1963, J.C.Kelly[3] initiated the study of  
bitopological spaces. In 2014 K.Bhuvaneswari et al., [1, 2] have introduced the notion of nano regular generalized and 
generalized regular closed sets in nano topological space and Nano bitopological spaces. In this paper, we have 
introduced a new class of sets on nano bitopological spaces called nano (1, 2)* generalized regular closed sets and the 
relation of these new sets with the existing sets. 
 
2. PRELIMINARIES 
 
Definition 2.1[7]: A subset A of a topological space ( , )X τ is called a regular open set if [ ( )]A Int cl A= . The 
complement of a regular open set of a space X is called regular closed set in X. 
 
Definition 2.2 [7]: A regular-closure of a subset A of X is the intersection of all regular closed sets that contains A and 
it is denoted by rcl(A). 
 
Definition 2.3 [7]: The union of all regular open subsets of X contained in A is called regular-interior of A and it is 
denoted by ( )rInt A . 
 
Definition 2.4 [8]: A subset A of ( , )X τ is called a generalized regular closed set (briefly gr closed) if ( )rcl A U⊆  
whenever A U⊆  and U is open in X. 
 
Definition 2.5 [8]: The generalized regular-closure of a subset A of a space X is the intersection of all generalized- 
regular closed sets containing A and is denoted by grcl(A) 
 
The generalized regular-interior of a subset A of a space X is the union of all generalized-regular open sets contained in 
A and is denoted by grInt(A). 
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Definition 2.6 [6]: Let U be the universe, R be an equivalence relation on U and ( ) { , , ( ) ( ) ( )}R RR RX U X X XUL Bφτ =  

where X U⊆ . Then by Property 2.10, ( )R Xτ  satisfies the following axioms:   

• U and ( )R XτΦ∈  

• The union of the elements of any sub-collection of  ( )R Xτ  is in ( )R Xτ  

• The intersection of  the elements of any finite sub collection  of ( )R Xτ  is in ( )R Xτ  

               Then ( )R Xτ  is a topology on U called the nano topology on U with respect to X. ( , ( ))RU Xτ  is called the 

nano topological space. Elements of the nano topology are known as nano open sets in U. Elements of  [ ( )]C

R Xτ  are 

called nano closed sets with [ ( )]C

R Xτ  being called nano topology of ( )R Xτ . 

  
Definition 2.7 [6]: If  ( , ( ))RU Xτ  is a nano topological space with respect to X where X U⊆  and if A U⊆ , then  

• The nano interior of the set A is defined as the union of all nano open subsets contained in A and is denoted by     
NInt(A). NInt(A) is the largest nano open subset of A. 

• The nano closure of the set A is denoted by Ncl(A). Ncl(A) is the smallest nano closed set containing A. 
 
Definition 2.8 [6]: Let ( , ( ))RU Xτ  be a nano topological space and A U⊆ . Then A is said to be  

• Nano regular open if [ ( )]A NInt Ncl A⊆  
• Nano regular closed if  [ ( )]Ncl NInt A A⊆  
       NRO(U,X), NRC(U,X) respectively denote the families of all nano regular open, nano regular closed subsets 
of U. 

 
Definition 2.9 [6]: If  ( , ( ))RU Xτ  is a nano topological space with respect to X where X U⊆  and if A U⊆ , 
Then 

(i) The nano regular-closure of A is defined as the intersection of all nano regular closed sets containing A and it 
is denoted by Nrcl(A). Nrcl(A) is the smallest nano regular closed set containing A. 

(ii) The nano regular-interior of A is defined as the union of all nano regular open subsets of A contained in A and 
it is denoted by NrInt(A). NrInt(A) is the largest nano  regular open subset of A. 

 
Definition 2.10 [6]: A subset A of  ( , ( ))RU Xτ  is called nano generalized-regular closed set (briefly Ngr closed) if 

( )Nrcl A V⊆  whenever A V⊆  and V is nano open in ( , ( ))RU Xτ . 
 
Definition 2.11 [3]: Let 

1,2
( , )X τ  be a bitopological space and A U⊆ . Then A is said to be 

• (1,2)* Regular open if 1,2 1,2
[ ( )]A Int cl Aτ τ⊆

  
• (1,2)* Regular closed if 

1,2 1,2
[ ( )]cl Int A Aτ τ ⊆  

  (1,2)*RO(X), (1,2)*RC(X) respectively denote the families of all (1,2)* regular open, (1,2)* regular closed 
subsets of  X. 
 
Definition 2.12 [3]: If  

1,2
( , )X τ  is a bitopological space with respect to X where X U⊆  and if A U⊆ , then  

(i) The (1,2)* regular-closure of A is defined as the intersection of all (1,2)* regular closed sets containing A and 
it is denoted by 

1,2τ rcl(A). 1,2τ rcl(A) is the smallest (1,2)*  regular closed set containing A. 

(ii) The (1,2)* regular-interior of A is defined as the union of all (1,2)* regular open subsets of A contained in A 
and it is denoted by 

1,2τ rInt(A). 
1,2τ rInt(A) is the largest (1,2)*regular open subset of A. 

 
Definition 2.13 [3]: A subset A of  

1,2
( , )X τ  is called (1,2)* generalized-regular closed set (briefly (1,2)* gr closed) if 

1,2
( )rcl A Uτ ⊆  whenever A U⊆  and U is (1,2)* open in 

1,2
( , )X τ . 
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Definition 2.14 [2]: Let U be the universe, R be an equivalence relation on U and 

1,2 1 2
( ) { ( ), ( )}X X XR R Rτ τ τ= 

where ( ) { , , ( ), ( ), ( )}R RR RX U X X XUL Bφτ = and X U⊆  Then ( )R Xτ satisfies the following axioms:   

• U and ( )R XτΦ∈  

• The union of the elements of any sub-collection of ( )R Xτ   is in ( )R Xτ . 

• The intersection of  the elements of any finite sub collection  of ( )R Xτ  is in ( )R Xτ . 

Then  
1,2

( , ( ))U XRτ  is called the nano bitopological space. Elements of the nano bitopology are known as 

nano (1, 2)* open sets in U. Elements of 
1,2

( )][ cX
Rτ  are called nano (1, 2)* closed sets in

1,2
( )XRτ . 

 
Definition 2.15 [2]: If 

1,2
( , ( ))U XRτ  is a nano bitopological space with respect to X where X U⊆  and if A U⊆ ,  

then 
• The nano (1, 2)* closure of A is defined as the intersection of all nano (1, 2)* closed sets containing A and it is 

denoted by
1,2

( )N cl Aτ . 
1,2

( )N cl Aτ  is the smallest nano (1, 2)* closed set containing A. 

• The nano (1, 2)* interior of A is defined as the union of all nano (1, 2)* open subsets of A contained in A and 
it is denoted by

1,2
( )N Int Aτ . 

1,2
( )N Int Aτ  is the largest nano (1, 2)* open subset of A. 

 
3. NANO (1, 2)* GENERALIZED  REGULAR CLOSED SETS  
 
In this section, we define and study the nano (1, 2)* generalized-regular closed sets in nano bitopological space 

1,2
( , ( ))U XRτ . 

 
Definition 3.1: A subset A of  

1,2
( , ( ))U XRτ  is called nano (1, 2)* generalized-regular closed set (briefly N(1, 2)*gr-

closed) if 
1,2

( ))N rcl A Vτ ⊆  whenever A V⊆  and V is nano (1, 2)* open in 
1,2

( , ( ))U XRτ . 

 
Example 3.2: Let  { , , , }U a b c d=  with / {{ },{ },{ , }}U R c d a b=   

          1 { , }a cX =  and  
1
( ) { , ,{ },{ , , },{ , }}X U c a b c a bR φτ =  

         2 { , }a dX =  and 
2
( ) { , ,{ },{ , , },{ , }}X U d a b d a bR φτ =  

Then 
1,2

( ) { , ,{ },{ },{ , },{ , , },{ , , }}X U c d a b a b c a b dR φτ =  which are (1,2)* open sets. 

 
The nano (1, 2)* closed sets ={ , ,{ },{ },{ , },{ , , },{ , , }}U c d c d a b c a b dφ . 
 
The nano (1, 2)* regular closed sets = { , ,{ },{ },{ , },{ , },{ , , },{ , , }}U c d a b c d a b c a b dφ  
 
The nano (1, 2)* regular open sets = { , ,{ , , },{ , , },{ , },{ , },{ },{ }}U a b d a b c c d a b d cφ  
 
The nano (1, 2)* generalized-regular open sets are 
 { , ,{ }{ },{ },{ },{ , },{ , },{ , },{ , },{ , },{ , },{ , , },U a b c d a b a c a d b c b d c d a b cφ         
       { , , },{ , , },{ , , }}a b d a c d b c d  . 
 
The nano (1, 2)* generalized-regular closed sets are 
 { , ,{ }{ },{ },{ },{ , },{ , },{ , },{ , },{ , },{ , },{ , , },U a b c d a b a c a d b c b d c d a b cφ      

                                                     { , , },{ , , },{ , , }}a b d a c d b c d . 
The nano (1, 2)* regular-generalized open sets are  
  { , ,{ }{ },{ },{ },{ , },{ , },{ , },{ , },{ , },{ , },{ , , },U a b c d a b a c a d b c b d c d a b cφ        
                                     { , , },{ , , },{ , , }}a b d a c d b c d          .  
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The nano (1, 2)* regular-generalized closed sets are  
             { , ,{ }{ },{ },{ },{ , },{ , },{ , },{ , },{ , },{ , },{ , , },U a b c d a b a c a d b c b d c d a b cφ              
                                                                         { , , },{ , , },{ , , }}a b d a c d b c d .   
 
Theorem 3.3: Let 

1,2
( , ( ))U XRτ  be a nano bitopological space. If a subset A of a nano bitopological space 

1,2
( , ( ))U XRτ  is nano (1,2)* regular closed set in 

1,2
( , ( ))U XRτ , then A is  a nano (1,2)* generalized-regular 

closed set in 
1,2

( , ( ))U XRτ . 

 
Proof: Let A be a nano (1,2)* regular closed set in X and A V⊆ , V is nano (1,2)*  open in U. That is

1,2 1,2
[ ( )]N cl N Int A Aτ τ = . Since A is nano (1,2)* open. 

1,2
( )N Int A Aτ =  .  Every nano (1,2)* open set 

is nano (1,2)* regular open. Therefore 1,2
( )N cl A A Vτ = ⊆ implies 1,2

( )N cl A Vτ ⊆ . Since A V⊆ then 

1,2
( )N cl A Vτ ⊆  whenever V is nano (1,2)* open in U. Hence A is a nano (1,2)* generalized-regular closed set. 

 
The converse of the above Theorem 3.3 is not true from the following example. 
 
Example 3.4: Let { , , , }U a b c d=  with / {{ },{ },{ , }}U R c d a b=   

          1 { , }X a c=  and  
1
( ) { , ,{ },{ , , },{ , }}X U c a b c a bR φτ =  

         2 { , }a dX =  and 
2
( ) { , ,{ },{ , , },{ , }}X U d a b d a bR φτ =  

Then 
1,2

( ) { , ,{ },{ },{ , },{ , , },{ , , }}X U c d a b a b c a b dR φτ =  which are (1, 2)* open sets. 

 
Here  is {{a},{b},{a, c},{a, d},{b, c},{b, d},{a, c, d},{b, c, d}} nano (1, 2)* generalized regular closed sets but it is not 
nano (1,2)* regular closed. 
 
Remark 3.5: Every nano (1, 2)* regular-generalized closed set is a nano (1,2)*  generalized-regular closed set. In the 
Example 3.2, all nano (1,2)* regular-generalized closed sets are nano (1,2)* generalized-regular closed sets. The 
converse of the Remark 3.5 is true. 
 
Remark 3.6: In the Example 3.2, let { }A Va= ⊆ , { , , , }V a b c d= , V is nano (1, 2)*open.

1,2
( ) { , , }N cl A a b c Vτ = ⊆   

 
Now 

1,2 1,2
( ) { , } ( )N rcl A a b N cl Aτ τ= ⊆ . If 

1,2
( )N cl A Vτ ⊆ , then 

1,2 1,2
( ) ( )N rcl A N cl Aτ τ⊆ . 

 
Theorem 3.7: Let 

1,2
( , ( ))U XRτ  be a nano bitopological space. If a subset A of a nano bitopological space 

1,2
( , ( ))U XRτ  is nano (1,2)* generalized closed set in 

1,2
( , ( ))U XRτ , then A is  a nano (1,2)* generalized regular 

closed set in 
1,2

( , ( ))U XRτ . 

 
Proof: Let V be any nano (1,2)* generalized closed set. Then 

1,2
( )N cl A Vτ ⊆  whenever A V⊆  and V is nano 

(1,2)* open in U. But 
1,2 1,2

( ) ( )N rcl A N cl Aτ τ⊆  whenever A V⊆  , V is nano (1,2)* open in U. Now we have 

1,2
( )N rcl A Vτ ⊆ , A V⊆  , V is nano (1,2)* open in U. Hence A is nano (1,2)* generalized regular closed set.  

 
Remark 3.8: The converse of the Theorem 3.7 need not be true. In the Example 3.2, let A={a}, V={a, b, d} whenever 
A V⊆ , V is nano (1,2)* open. Now 

1,2
( ) { , }N rcl A a b Vτ = ⊆ . Hence A={a, b} is nano (1,2)* generalized regular 

closed set. But 
1,2

( ) { , , }N cl A a b c Vτ = ⊆/ . Hence the subset A = {a} is not nano (1,2)* generalized closed set. 

Hence every nano (1,2)* generalized regular closed set need not be a nano (1,2)* generalized closed set. 
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Theorem 3.9: φ  and U are nano (1,2)* generalized regular closed subset of U. 
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