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ABSTRACT 
In this paper, we define a new concept, called soft union action (SU) on N- module structures on a fuzzy soft set. This 
new notions gathers fuzzy theory, soft set theory and near-ring modulo theory (N-module theory) together and it shows 
how a fuzzy soft set effects on N-module structure in the mean of union and inclusion of sets. We then obtain its basic 
properties with illustrative examples and derive some analog of classical N-module theoretic concepts for SU-action on 
N-module. Finally, we give the application of SU-actions on N-module theory. 
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1. INTRODUCTION 
 
Soft set theory was introduced in 1999 by Molodtsov [22] for dealing with uncertainties and it has gone through 
remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 25, 28]. Moreover, Atagun 
and Sezgin [4] defined the concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub modules 
of a module and studied their related properties with respect to soft set operations. Operations of soft sets have been 
studied by some authors, too. Maji et al. [19] presented some definitions on soft sets and based on the analysis of 
several operations on soft sets Ali et al. [3] introduced several operations of soft sets and Sezgin and Atagun [26] 
studied on soft set operations as well. Furthermore, soft set relations and functions [5] and soft mappings [21] with 
many related concepts were discussed. The theory of soft set has also a wide-ranging applications especially in soft 
decision making as in the following studies: [6, 7, 23, 29]. In this paper, we define a new concept, called soft union 
action (SU) on N- module structures on a fuzzy soft set. This new notions gathers fuzzy theory, soft set theory and 
near-ring modulo theory (N-module theory) together and it shows how a fuzzy soft set effects on N-module structure in 
the mean of union and inclusion of sets. We then obtain its basic properties with illustrative examples and derive some 
analog of classical N-module theoretic concepts for SU-action on N-module. Finally, we give the application of        
SU-actions on N-module theory. 
 
2. PRELIMINARIES 
 
In this section, we recall some basic notions relevant to near-ring modules (N-modules) and fuzzy soft sets. By a near-
ring, we shall mean an algebraic system (N, +, .), where  
(N1) (N, +) forms a group (not necessarily abelian) 
(N2) (N, .) forms a semi group and 
(N3) (x + y)z = xz + yz for all x, y, z ∈ N. (that is we study on right Near-ring modules) 
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Throughout this paper, N will always denote right near-ring. A normal subgroup H of N is called a left ideal of N if 
n(s+h)-ns ∈ H for all n, s ∈ N and h ∈ I and denoted by H⊲ℓN. For a near-ring N, the zero-symmetric part of N denoted 
by N0 is defined by N0= {n∈ S / n0=0}. 
 
Let (S, +) be a group and A: N×S →S, (n, s)→s. (S, A) is called N-module or near-ring module if for all x, y ∈ N, for 
all s ∈ S. 
(i) x(ys) = (xy)s 
(ii) (x+y)s = xs+ys. It is denoted by 𝑁𝑁𝑆𝑆. Clearly N itself is an N-module by natural operations. A subgroup T of 𝑁𝑁𝑆𝑆 

with NT⊆T is said to be N-sub module of S and denoted by T≤𝑁𝑁S. A normal subgroup T of S is called an N-ideal 
of 𝑁𝑁𝑆𝑆 and denoted by a near-ring, S and χ two N-modules. Then h: S→χ is called an N-homomorphism if s,𝛿𝛿 ∈ S, 
for all n∈ N, 
(i) h(s+𝛿𝛿) = h(s)+h(𝛿𝛿) and 
(ii) h(ns) = nh(s). 

 
For all undefined concepts and notions we refer to (24). From now on, U refers to on initial universe, E is a set of 
parameters P(U) is the power set of U and A, B, C⊆ E. 
 
2.1. Definition [22]: A pair (F, A) is called a soft set over U, where F is a mapping given by F: A→P(U). 
 
In other words, a soft set over U is a parameterized family of subsets of the universe U. 
 
Note that a soft set (F, A) can be denoted by FA. In this case, when we define more than one soft set in some subsets A, 
B, C of parameters E, the soft sets will be denoted by FA, FB, FC, respectively. On the other case, when we define more 
than one soft set in a subset A of the set of parameters E, the soft sets will be denoted by FA, GA, HA, respectively. For 
more details, we refer to [11, 17, 18, 26, 29, 7]. 
 
2.2. Definition [6]: The relative complement of the soft set FA over U is denoted by Fr

A, where Fr
A: A → P(U) is a 

mapping given as Fr
A(a) = U \ FA(a), for all a ∈ A. 

 
2.3. Definition [6]: Let FA and GB be two soft sets over U such that A ∩ B ≠ ∅,. The restricted intersection of FA and 
GB is denoted by FA ⋓ GB, and is defined as FA ⋓ GB = (H, C), where C = A∩B and for all c ∈ C, H(c) = F(c) ∩ G(c). 
 
2.4. Definition [6]: Let FA and GB be two soft sets over U such that A ∩ B ≠ ∅,. The restricted union of FA and GB is 
denoted by FA∪R GB, and is defined as FA∪R GB = (H, C), where C = A∩B and for all c ∈ C, H(c) = F(c) ∪G(c). 
 
2.5. Definition [12]: Let FA and GB be soft sets over the common universe U and 𝜓𝜓 be a function from A to B. Then we 
can define the soft set 𝜓𝜓 (FA) over U, where 𝜓𝜓 (FA): B→P(U) is a set valued function defined by 𝜓𝜓 (FA)(b) =∪{F(a) | a 
∈ A and  𝜓𝜓 (a) = b}, if 𝜓𝜓−1(b) ≠ ∅,  = 0 otherwise for all b ∈ B. Here, 𝜓𝜓 (FA) is called the soft image of FA under 𝜓𝜓. 
Moreover we can define a soft set 𝜓𝜓−1(GB) over U, where 𝜓𝜓−1(GB): A → P(U) is a set-valued function defined by 
𝜓𝜓−1(GB)(a) = G(𝜓𝜓 (a)) for all a ∈ A. Then, 𝜓𝜓−1(GB) is called the soft pre image (or inverse image) of GB under 𝜓𝜓. 
 
2.6. Definition [13]: Let FA and GB be soft sets over the common universe U and 𝜓𝜓 be a function from A to B. Then we 
can define the soft set 𝜓𝜓⋆(FA) over U, where 𝜓𝜓⋆(FA) : B→P(U) is a set-valued function defined by 
 𝜓𝜓⋆(FA)(b) =∩{F(a) | a ∈ A and 𝜓𝜓 (a) = b},  if 𝜓𝜓−1(b) ≠ ∅, 
                 = 0 otherwise for all b ∈ B. Here, 𝜓𝜓⋆(FA) is called the soft anti image of FA under 𝜓𝜓. 
 
2.7 Definition [8]:  Let fA be a soft set over U and α be a subset of U. Then, lower α-inclusion of a soft set fA, denoted 
by f αA, is defined as f αA = {x ∈ A: fA(x) ⊆ α} 
 
3. SU-ACTION ON N-MODULE STRUCTURES AND N-IDEAL STRUCTURES WITH FUZZY VERSION  
 
In this section, we first define fuzzy soft union action, abbreviated as fuzzy SU-action on N-module and N-ideal 
structures with illustrative examples. We then study their basic results with respect to soft set operation.   

 
3.1 Definition: Let S be an N-module and 𝑓𝑓𝑠𝑠 be a fuzzy soft set over U, then 𝑓𝑓𝑠𝑠 is called fuzzy SU-action on N-module 
over U if it satisfies the following conditions; 
(FSUN-1) 𝑓𝑓𝑠𝑠 (x+y) ⊆ 𝑓𝑓𝑠𝑠(x) U 𝑓𝑓𝑠𝑠(y) 
(FSUN-2) 𝑓𝑓𝑠𝑠 (-x) ⊆ 𝑓𝑓𝑠𝑠(x) 
(FSUN-3) 𝑓𝑓𝑠𝑠 (nx) ⊆ 𝑓𝑓𝑠𝑠(x) 
For all x, y ∈ S and n ∈N. 
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3.1 Example: Consider the near-ring module N = {0, x, y, z}, be the near-ring under the operation defined by the 
following table: 
 
              
 

 
Let S = N and S be the set of parameters and U = ��a a

0 a�  / a, b ∈ Z6�, 2⨉2 matrices with 𝑍𝑍6 terms, is the universal 
set. We construct a fuzzy soft set. 
𝑓𝑓𝑠𝑠 (0) = ��0 0

0 0� , �2 2
0 2� , �3 3

0 3��,    𝑓𝑓𝑠𝑠 (x) = ��0 0
0 0� , �2 2

0 2� , �3 3
0 3��,   𝑓𝑓𝑠𝑠 (y) = ��2 2

0 2��, and fs  (z) = ��2 2
0 2�� 

 
Then one can easily show that the soft set 𝑓𝑓𝑠𝑠 is a fuzzy SU-action on N-module. 
 
3.1 Proposition: Let  𝑓𝑓𝑠𝑠 be a fuzzy SU-action on N-module over U. Then, 𝑓𝑓𝑠𝑠(0) ⊆ 𝑓𝑓𝑠𝑠(x) for all x ∈ 𝑆𝑆. 
 
Proof: Assume that 𝑓𝑓𝑠𝑠 is fuzzy SU-action over U. Then, for all x∈S, 𝑓𝑓𝑠𝑠(0)= 𝑓𝑓𝑠𝑠(x-x)⊆𝑓𝑓𝑠𝑠(x)∪ 𝑓𝑓𝑠𝑠(-x) = 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(x)= 𝑓𝑓𝑠𝑠(x). 
 
3.1Theorem: Let S be a fuzzy SU-action on N-module and  𝑓𝑓𝑠𝑠 be a fuzzy soft set over U. Then 𝑓𝑓𝑠𝑠  is SU-action of        
N-module over U if and only if 

(i) 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y) 
(ii) 𝑓𝑓𝑠𝑠(nx) ⊆ 𝑓𝑓𝑠𝑠(x)  for all x,y ∈ S and n ∈ N. 

 
Proof: Suppose 𝑓𝑓𝑠𝑠 is a fuzzy SU-action on N-module over U. Then, by definition-3.1, 𝑓𝑓𝑠𝑠(xy) ⊆ 𝑓𝑓𝑠𝑠(y)   
and 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(-y) = 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y) for all x, y ∈ S 
 
Conversely, assume that 𝑓𝑓𝑠𝑠(xy) ⊆ 𝑓𝑓𝑠𝑠(y)  and 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y) for all x, y ∈ S. 
 
If we choose x=0, then  𝑓𝑓𝑠𝑠(0-y) = 𝑓𝑓𝑠𝑠(-y) ⊆ 𝑓𝑓𝑠𝑠(0) ∪ 𝑓𝑓𝑠𝑠(y) =𝑓𝑓𝑠𝑠(y) by proposition-3.1. Similarly  𝑓𝑓𝑠𝑠(y) = 𝑓𝑓𝑠𝑠(−(-y)) ⊆ 𝑓𝑓𝑠𝑠(-y), 
thus 𝑓𝑓𝑠𝑠(-y) = 𝑓𝑓𝑠𝑠(y) for all y ∈ S. Also, by assumption 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(-y) = 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y).  This complete the proof.  
 
3.2. Theorem: Let  𝑓𝑓𝑠𝑠 be a fuzzy SU-action on N-module over U.  

(i) If 𝑓𝑓𝑠𝑠(x-y)= 𝑓𝑓𝑠𝑠(0)  for any x, y ∈ S ,then 𝑓𝑓𝑠𝑠(x) = 𝑓𝑓𝑠𝑠(y). 
(ii) 𝑓𝑓𝑠𝑠(x-y)= 𝑓𝑓𝑠𝑠(0)  for any x, y ∈ S, then 𝑓𝑓𝑠𝑠(x) = 𝑓𝑓𝑠𝑠(y). 

 
Proof: Assume that 𝑓𝑓𝑠𝑠(x-y)= 𝑓𝑓𝑠𝑠(0)  for any x, y ∈ S, then  

𝑓𝑓𝑠𝑠(x) = 𝑓𝑓𝑠𝑠(x-y+y) ⊆ 𝑓𝑓𝑠𝑠(x-y) ∪ 𝑓𝑓𝑠𝑠(y) 
        = 𝑓𝑓𝑠𝑠(0) ∪ 𝑓𝑓𝑠𝑠(y) =𝑓𝑓𝑠𝑠(y) 

and similarly, 
𝑓𝑓𝑠𝑠(y) = 𝑓𝑓𝑠𝑠((y-x)+x) ⊆ 𝑓𝑓𝑠𝑠(y-x) ∪ 𝑓𝑓𝑠𝑠(x) 
        = 𝑓𝑓𝑠𝑠(−(y-x))  ∪ 𝑓𝑓𝑠𝑠(x) 
        = 𝑓𝑓𝑠𝑠(0) ∪ 𝑓𝑓𝑠𝑠(x) =𝑓𝑓𝑠𝑠(x) 

 
Thus, 𝑓𝑓𝑠𝑠(x) =𝑓𝑓𝑠𝑠(y) which completes the proof .Similarly, we can show the result (ii). 
 
It is known that if S is an N-module, then (S, +) is a group but not necessarily abelian. That is, for any x, y ∈ S, x + y  
needs not be equal  to y + x. However, we have the following: 
 
3.3. Theorem: Let  𝑓𝑓𝑠𝑠 be fuzzy SU-action on N-module over U and x ∈ S. Then, 

𝑓𝑓𝑠𝑠(x) =𝑓𝑓𝑠𝑠(0) ⇔  𝑓𝑓𝑠𝑠(x+y) = 𝑓𝑓𝑠𝑠(y+x) = 𝑓𝑓𝑠𝑠(y) for all y ∈ S . 
 
Proof: Suppose that 𝑓𝑓𝑠𝑠(x+y)=  𝑓𝑓𝑠𝑠(y+x) = 𝑓𝑓𝑠𝑠(y)  for all y ∈ S. Then, by choosing y = 0, 
 
We obtain that  𝑓𝑓𝑠𝑠(x) =𝑓𝑓𝑠𝑠(0). 
 
Conversely, assume that 𝑓𝑓𝑠𝑠(x) =𝑓𝑓𝑠𝑠(0). Then by proposition-3.1, we have  

𝑓𝑓𝑠𝑠(0) =𝑓𝑓𝑠𝑠(x) ⊂ 𝑓𝑓𝑠𝑠(y), ∀ y ∈ S……………….. (1) 
 

+ 0      x      y      z 
 0 
x 
y 
z 

0      x      y      z    
x      0      z      y    
y      z      0      x    
z      y      x      0  

. 0      x      y      z 
0 
x 
y 
z 

0      0      0      0   
x      x      x      x    
0      0      0      0    
x      x      x      x 
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Since 𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-module over U, then  

𝑓𝑓𝑠𝑠(x+y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y) = 𝑓𝑓𝑠𝑠(y), ∀ y ∈ S.  
 
Moreover, for all y ∈ S 

𝑓𝑓𝑠𝑠(y) = 𝑓𝑓𝑠𝑠((-x)+x)+y) = 𝑓𝑓𝑠𝑠(-x+(x+y)) ⊆ 𝑓𝑓𝑠𝑠(-x) ∪ 𝑓𝑓𝑠𝑠(x+y) 
         = 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(x+y)= 𝑓𝑓𝑠𝑠(x+y) 

 
Since by equation (1), 𝑓𝑓𝑠𝑠(x) ⊆ 𝑓𝑓𝑠𝑠(y) for all y ∈ S and x, y ∈ S, implies that x+y ∈S. Thus, it follows that 𝑓𝑓𝑠𝑠(x) ⊆ 𝑓𝑓𝑠𝑠(x+y).  
 
So  𝑓𝑓𝑠𝑠(x+y) = 𝑓𝑓𝑠𝑠(y) for all y ∈ S. 
 
Now, let x ∈ S. Then, for all x, y ∈ S 

𝑓𝑓𝑠𝑠(y + x) = 𝑓𝑓𝑠𝑠(y+x+(y-y)) 
               = 𝑓𝑓𝑠𝑠(y+(x+y)-y) 
               ⊆ 𝑓𝑓𝑠𝑠(y) ∪ 𝑓𝑓𝑠𝑠(x+y) ∪ 𝑓𝑓𝑠𝑠(y) 
               = 𝑓𝑓𝑠𝑠(y) ∪ 𝑓𝑓𝑠𝑠(x+y)= 𝑓𝑓𝑠𝑠(y) 

 
Since 𝑓𝑓𝑠𝑠(x+y) = 𝑓𝑓𝑠𝑠(y). Furthermore, for all y ∈ S  

𝑓𝑓𝑠𝑠(y) =𝑓𝑓𝑠𝑠(y+(x-x)) 
        = 𝑓𝑓𝑠𝑠((y+x)-x ) 
        ⊆ 𝑓𝑓𝑠𝑠(y+x) ∪ 𝑓𝑓𝑠𝑠(x) 
        = 𝑓𝑓𝑠𝑠(y+x) by equation (1). 

 
It follows that 𝑓𝑓𝑠𝑠(y+x) =  𝑓𝑓𝑠𝑠(y) and so 𝑓𝑓𝑠𝑠(x+y) = 𝑓𝑓𝑠𝑠(y+x)= 𝑓𝑓𝑠𝑠(y), for all y ∈ S, which completes the proof. 
 
3.4 Theorem: Let  S be a near-field and 𝑓𝑓𝑠𝑠be a fuzzy soft set over U. If  𝑓𝑓𝑠𝑠(0) ⊆ 𝑓𝑓𝑠𝑠(1) = 𝑓𝑓𝑠𝑠(x) for all 0≠ x ∈ S, then it is 
fuzzy SU-action on N-module over U. 
 
Proof: Suppose that 𝑓𝑓𝑠𝑠(0)⊆ 𝑓𝑓𝑠𝑠(1) = 𝑓𝑓𝑠𝑠(x) for all 0≠ x ∈ S. In order to prove that it is fuzzy SU-action on N-module 
over U,it is enough to prove that 𝑓𝑓𝑠𝑠(x-y)⊆ 𝑓𝑓𝑠𝑠(x)∪ 𝑓𝑓𝑠𝑠(y) and 𝑓𝑓𝑠𝑠(nx)⊆ 𝑓𝑓𝑠𝑠(x). 
 
Let   x, y ∈ S. Then we have the following cases: 
 
Case-1: Suppose that x ≠ 0 and y = 0 or x = 0 and y ≠ 0. Since S is a near-field, so it follows that nx=0 and           
𝑓𝑓𝑠𝑠 (nx) = 𝑓𝑓𝑠𝑠 (0). Since 𝑓𝑓𝑠𝑠 (0)⊆ 𝑓𝑓𝑠𝑠 (x), for all x∈S, so 𝑓𝑓𝑠𝑠 (nx) = 𝑓𝑓𝑠𝑠 (0) ⊆ 𝑓𝑓𝑠𝑠 (x), and 𝑓𝑓𝑠𝑠 (nx) = 𝑓𝑓𝑠𝑠 (0) ⊆ 𝑓𝑓𝑠𝑠 (y). This imply       
𝑓𝑓𝑠𝑠(nx) ⊆ 𝑓𝑓𝑠𝑠(x). 
 
Case-2: Suppose that x≠ 0 and y≠0. It follows that nx≠0. Then, 𝑓𝑓𝑠𝑠(nx)= 𝑓𝑓𝑠𝑠(1)= 𝑓𝑓𝑠𝑠 (x) and  𝑓𝑓𝑠𝑠(nx)= 𝑓𝑓𝑠𝑠 (1) = 𝑓𝑓𝑠𝑠 (y), 
which implies that 𝑓𝑓𝑠𝑠(nx)⊆ 𝑓𝑓𝑠𝑠(x). 
 
Case-3: suppose that x= 0 and y = 0, then clearly 𝑓𝑓𝑠𝑠(nx) ⊆ 𝑓𝑓𝑠𝑠(x). Hence 𝑓𝑓𝑠𝑠(nx)⊆ 𝑓𝑓𝑠𝑠(x), for all  x, y ∈ S. 
 
Now, let x, y ∈ S. Then x-y=0 or x-y≠ 0. If x-y = 0, then either x=y=0 or x≠ 0, y≠ 0 and x=y.  
 
But, since 𝑓𝑓𝑠𝑠(x-y) =  𝑓𝑓𝑠𝑠(0) ⊆  𝑓𝑓𝑠𝑠(x), for all x ∈ N, it follows that 𝑓𝑓𝑠𝑠(x-y) = 𝑓𝑓𝑠𝑠(0) ⊆  𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y). 
 
If  x – y ≠ 0, then either x ≠ 0, y ≠ 0 and x≠y or  x≠ 0 and y = 0 or x = 0 and y ≠ 0. 
 
Assume that x ≠ 0, y≠ 0 and x ≠ y. This follows that  

𝑓𝑓𝑠𝑠(x-y) = 𝑓𝑓𝑠𝑠(1) = 𝑓𝑓𝑠𝑠(x) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y). 
 
Now, let  x ≠ 0 and y = 0. Then 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y). Finally, let x = 0 and y ≠ 0. 
 
Then, 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y). Hence 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x) ∪ 𝑓𝑓𝑠𝑠(y), for all x, y ∈ S. 
 
Thus, 𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-module over U.  
 
3.5 Theorem: Let  𝑓𝑓𝑠𝑠 and 𝑓𝑓𝑇𝑇 be two fuzzy SU - action on N-module over U. Then 𝑓𝑓𝑠𝑠˄𝑓𝑓𝑇𝑇  is fuzzy soft SU-action on      
N-module over U. 
 
Proof: let (𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2) ∈ S×T.Then  
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𝑓𝑓𝑆𝑆�˄�𝛬𝑇𝑇 ��𝑥𝑥1,𝑦𝑦1� − �𝑥𝑥2,𝑦𝑦2�� =  𝑓𝑓𝑆𝑆�˄�𝛬𝑇𝑇  (𝑥𝑥1−𝑥𝑥2, 𝑦𝑦1−𝑦𝑦2) 

= 𝑓𝑓𝑆𝑆 (𝑥𝑥1−𝑥𝑥2 ) ∩ 𝑓𝑓𝑇𝑇  (𝑦𝑦1−𝑦𝑦2 ) 
⊆ (𝑓𝑓𝑆𝑆 (𝑥𝑥1 ) ∪ 𝑓𝑓𝑆𝑆 (𝑥𝑥2 )) ∩ (𝑓𝑓𝑇𝑇  (𝑦𝑦1 ) ∪ 𝑓𝑓𝑇𝑇  (𝑦𝑦2 )) 
= (𝑓𝑓𝑆𝑆 (𝑥𝑥1 ) ∪ 𝑓𝑓𝑇𝑇  (𝑦𝑦1 )) ∩ (𝑓𝑓𝑆𝑆  (𝑥𝑥2 ) ∪ 𝑓𝑓𝑇𝑇  (𝑦𝑦2 )) 
= 𝑓𝑓𝑆𝑆˄𝑇𝑇�𝑥𝑥1,𝑦𝑦1� ∩ 𝑓𝑓𝑆𝑆˄𝑇𝑇�𝑥𝑥2,𝑦𝑦2� 

 and 
𝑓𝑓𝑆𝑆˄𝑇𝑇 ��𝑛𝑛1,𝑛𝑛2�, �𝑥𝑥2,𝑦𝑦2�� = 𝑓𝑓𝑆𝑆˄𝑇𝑇�𝑛𝑛1𝑥𝑥2,𝑛𝑛2𝑦𝑦2� 

 = 𝑓𝑓𝑆𝑆(𝑛𝑛1𝑥𝑥2) ∩ 𝑓𝑓𝑇𝑇  (𝑛𝑛2𝑦𝑦2 ) 
 ⊆ 𝑓𝑓𝑆𝑆(𝑥𝑥2) ∩ 𝑓𝑓𝑇𝑇  (𝑦𝑦2 ) 
 = 𝑓𝑓𝑆𝑆˄𝑇𝑇�𝑥𝑥2,𝑦𝑦2� 

 
Thus   𝑓𝑓𝑠𝑠˄𝑓𝑓𝑇𝑇  is fuzzy SU-action on N-module over U. 
 
Note that   𝑓𝑓𝑠𝑠  ˅ 𝑉𝑉 𝑓𝑓𝑇𝑇 is not fuzzy SU-action on N-module over U. 
 
3.2 Example: Assume U = 𝑝𝑝3 is the universal set. Let S = 𝑍𝑍3  and H = ��𝑎𝑎 𝑎𝑎

𝑏𝑏 𝑏𝑏�  / 𝑎𝑎, 𝑏𝑏 ∈  𝑍𝑍3 � 2× 2 matrices with 
 𝑍𝑍3 terms, be set of parameters. We define fuzzy SU-action on N-module 𝑓𝑓𝑆𝑆  over U= 𝑝𝑝3 by  

𝑓𝑓𝑆𝑆(0) =  𝑝𝑝3  
𝑓𝑓𝑆𝑆(1) = {(1), (1 2), (1 3 2)} 
𝑓𝑓𝑆𝑆(2) ={(1), (1 2), (1 2 3), (1 3 2)} 

 
We define fuzzy SU-action on N-module 𝑓𝑓𝐻𝐻over U= 𝑝𝑝3 by 

𝑓𝑓𝐻𝐻 ��0 0
0 0�� = 𝑝𝑝3  

𝑓𝑓𝐻𝐻 ��0 0
1 1�� = {(1), (1 2), (1 3 2)} 

 
Note that 𝑓𝑓𝑠𝑠�˅�𝑉𝑓𝑓𝑇𝑇  is not fuzzy SU-action on N-module over U. 
 
3.2 Definition: Let 𝑓𝑓𝑆𝑆, 𝑔𝑔𝑇𝑇  be fuzzy SU-action on N-module over U. Then product of fuzzy SU-action on N-module 
𝑓𝑓𝑆𝑆 and 𝑔𝑔𝑇𝑇  is defined as 𝑓𝑓𝑆𝑆 × 𝑔𝑔𝑇𝑇  = ℎS×T , where  ℎS×T(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓𝑆𝑆 (𝑥𝑥) ×  𝑔𝑔𝑇𝑇(y) for all (x, y) ∈ S × T. 
 
3.6 Theorem: If  𝑓𝑓𝑆𝑆   𝑎𝑎𝑛𝑛𝑎𝑎 𝑔𝑔𝑇𝑇  are fuzzy SU-action on N-module over U. Then so is 𝑓𝑓𝑆𝑆 × 𝑔𝑔𝑇𝑇  over U×U. 
 
Proof: By definition-3.2, let 𝑓𝑓𝑆𝑆 × 𝑔𝑔𝑇𝑇  =ℎS×T , where ℎS×T(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓𝑆𝑆 (𝑥𝑥) ×  𝑔𝑔𝑇𝑇 (y) for all (x, y) ∈ S × T. Then for all 
(𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2) ∈ S × T and �𝑛𝑛1,𝑛𝑛2�=N×N. 

ℎS×T  ��𝑥𝑥1,𝑦𝑦1� − �𝑥𝑥2,𝑦𝑦2�� = ℎS×T  (𝑥𝑥1−𝑥𝑥2, 𝑦𝑦1−𝑦𝑦2) 
 = 𝑓𝑓𝑆𝑆 (𝑥𝑥1−𝑥𝑥2) ×   𝑔𝑔𝑇𝑇  (𝑦𝑦1−𝑦𝑦2) 
 ⊆ (𝑓𝑓𝑆𝑆 (𝑥𝑥1) ∪ 𝑓𝑓𝑆𝑆 (𝑥𝑥2)) × (𝑔𝑔𝑇𝑇  (𝑦𝑦1) ∪ 𝑔𝑔𝑇𝑇  (𝑦𝑦2)) 
 = (𝑓𝑓𝑆𝑆  (𝑥𝑥1) × 𝑔𝑔𝑇𝑇  (𝑦𝑦1)) ∪ (𝑓𝑓𝑆𝑆 (𝑥𝑥2) × 𝑔𝑔𝑇𝑇  (𝑦𝑦2)) 
 = ℎS×T�𝑥𝑥1,𝑦𝑦1�  ∪  ℎS×T�𝑥𝑥2,𝑦𝑦2� 

 
ℎS×T ��𝑛𝑛1,𝑛𝑛2��𝑥𝑥2,𝑦𝑦2�� = ℎS×T�𝑛𝑛1𝑥𝑥2,𝑛𝑛2𝑦𝑦2� 

=  𝑓𝑓𝑆𝑆(𝑛𝑛1𝑥𝑥2) × 𝑔𝑔𝑇𝑇  (𝑛𝑛2𝑦𝑦2) 
⊆ 𝑓𝑓𝑆𝑆(𝑥𝑥2) × 𝑔𝑔𝑇𝑇  (𝑦𝑦2) 
= ℎS×T�𝑥𝑥2,𝑦𝑦2� 

   
Hence 𝑓𝑓𝑆𝑆 × 𝑔𝑔𝑇𝑇  = ℎS×T  is fuzzy SU-action on N-module over U. 
 
3.7. Theorem: If  𝑓𝑓𝑆𝑆 and ℎS  are fuzzy SU-action on N-module over U, then so is  𝑓𝑓𝑆𝑆 ∩� ℎS  over U. 
 
Proof:  Let x, y ∈ s and  n ∈ N then  

(𝑓𝑓𝑆𝑆 ∩� ℎS) (x-y) =𝑓𝑓𝑆𝑆(x-y) ∩ ℎS  (x-y) 
 ⊆ (𝑓𝑓𝑆𝑆(𝑥𝑥) ∪ 𝑓𝑓𝑆𝑆 (𝑦𝑦)) ∩ (ℎ𝑆𝑆  (𝑥𝑥) ∪ ℎ𝑆𝑆  (𝑦𝑦)) 
 = (𝑓𝑓𝑆𝑆(𝑥𝑥) ∩ ℎ𝑆𝑆(𝑥𝑥)) ∪ (𝑓𝑓𝑆𝑆 (𝑦𝑦) ∩ ℎ𝑆𝑆  (𝑦𝑦)) 
 = (𝑓𝑓𝑆𝑆 ∩� ℎS ) (𝑥𝑥) ∪ (𝑓𝑓𝑆𝑆 ∩� ℎS )(𝑦𝑦) 
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(𝑓𝑓𝑆𝑆 ∩� ℎS) (𝑛𝑛x) = 𝑓𝑓𝑆𝑆(𝑛𝑛𝑥𝑥) ∩ ℎS(𝑛𝑛𝑥𝑥) 

⊆  𝑓𝑓𝑆𝑆(𝑥𝑥) ∩  ℎS(𝑥𝑥) 
= (𝑓𝑓𝑆𝑆 ∩� ℎS ) (x) 

 
Therefore, (𝑓𝑓𝑆𝑆 ∩� ℎS) is fuzzy SU-action on N-module over U. 
 
4. SU-ACTION ON N-IDEAL STRUCTURES  
 
4.1 Definition:  Let S be an N-module and  𝑓𝑓𝑆𝑆 be a fuzzy soft set over U. Then 𝑓𝑓𝑆𝑆  is called fuzzy SU-action on N-ideal 
of S over U if the following conditions are satisfied: 

(i) 𝑓𝑓𝑠𝑠(𝑥𝑥 + 𝑦𝑦) ⊆ 𝑓𝑓𝑠𝑠(𝑥𝑥) ∪ 𝑓𝑓𝑠𝑠(𝑦𝑦) 
(ii) 𝑓𝑓𝑠𝑠(−𝑥𝑥) = 𝑓𝑓𝑠𝑠(𝑥𝑥)  
(iii) 𝑓𝑓𝑠𝑠(𝑥𝑥 + 𝑦𝑦 − 𝑥𝑥) ⊆ 𝑓𝑓𝑠𝑠(𝑦𝑦)  
(iv) 𝑓𝑓𝑠𝑠(𝑛𝑛(𝑥𝑥 + 𝑦𝑦) − 𝑛𝑛𝑥𝑥) ⊆ 𝑓𝑓𝑠𝑠(𝑦𝑦) for all x, y ∈ S  and  n ∈ N.  

 
Here, note that    

𝑓𝑓𝑠𝑠(𝑥𝑥 + 𝑦𝑦) ⊆  𝑓𝑓𝑠𝑠(𝑥𝑥)  ∪ 𝑓𝑓𝑠𝑠(𝑦𝑦) and 𝑓𝑓𝑠𝑠(−𝑥𝑥) = 𝑓𝑓𝑠𝑠(𝑥𝑥) imply 𝑓𝑓𝑠𝑠(𝑥𝑥 − 𝑦𝑦) ⊆ 𝑓𝑓𝑠𝑠(𝑥𝑥) ∪ 𝑓𝑓𝑠𝑠(𝑦𝑦) 
 
4.1 Example: Consider the near –ring N={0, x, y, z} with the following tables 
 
 
 
 
 
 
 
 
Let S=N be the parameters and U= 𝐷𝐷2 , dihedral group, be the universal set. We define a fuzzy soft set 𝑓𝑓𝑠𝑠 over U by 
𝑓𝑓𝑠𝑠(0) = 𝐷𝐷2 ,   𝑓𝑓𝑠𝑠(𝑥𝑥) = {𝑒𝑒, 𝑏𝑏, 𝑏𝑏𝑎𝑎}, 𝑓𝑓𝑠𝑠(𝑦𝑦) = {𝑎𝑎, 𝑏𝑏}, 𝑓𝑓𝑠𝑠(𝑧𝑧) = {𝑏𝑏}.  
 
Then, one can show that  𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-ideal of S over U. 
 
4.2 Example: Consider the near –ring N={0, 1, 2, 3} with the following tables 
 
 
 
 
 
 
 
Let S=N be the set of parameters and U= 𝑍𝑍+ be the universal set. We define a fuzzy soft set 𝑓𝑓𝑠𝑠  over U by   

𝑓𝑓𝑠𝑠(0) = {1, 2, 3, 5, 6, 7, 9, 10, 11, 17} 
𝑓𝑓𝑠𝑠(1) = 𝑓𝑓𝑠𝑠(3) = {1, 3, 5, 7, 9, 11} 
𝑓𝑓𝑠𝑠(2) = {1, 5, 7, 9, 11} 

 
Since 𝑓𝑓𝑠𝑠(2. (3 + 1) − 2.3) = 𝑓𝑓𝑠𝑠(2.1 − 2.3) = 𝑓𝑓𝑠𝑠(3 − 3) = 𝑓𝑓𝑠𝑠(0) ⊈ 𝑓𝑓𝑠𝑠(1) 
 
Therefore, 𝑓𝑓𝑠𝑠 is not fuzzy SU-action on N-ideal over U. 
 
It is known that if N is a zero- symmetric near-ring, then every N-ideal of S is also N-module of S. Here, we have an 
analog for this case. 
 
4.1 Theorem: Let N be a zero- symmetric near-ring. Then, every fuzzy SU-action on N-ideal is fuzzy SU-action on N-
module  over U. 
 
Proof: Let 𝑓𝑓𝑠𝑠 be an fuzzy SU-action on N-ideal on S over U. Since 𝑓𝑓𝑠𝑠(n(x+y)-nx) ⊆ 𝑓𝑓𝑠𝑠(y), for all x, y ∈ S, and n∈N, in 
particular for x=0, it follows that 𝑓𝑓𝑠𝑠(n(0+y)-n.0) = 𝑓𝑓𝑠𝑠(ny-0)= 𝑓𝑓𝑠𝑠(y)⊆ 𝑓𝑓𝑠𝑠(y). 
 
Since the other condition is satisfied by definition-4.1, 𝑓𝑓𝑠𝑠  is fuzzy SU-action on N-ideals of S over U. 
 
4.2 Theorem: Let 𝑓𝑓𝑠𝑠 be fuzzy SU-action on N-ideal of S and 𝑓𝑓𝑇𝑇  be fuzzy SU-action on N-ideal of T over U. Then 𝑓𝑓𝑠𝑠˄𝑓𝑓𝑇𝑇  
is fuzzy SU-action on N-ideal of S×T over U. 

. 0      x      y      z 
0 
x 
y 
z 

0      0      0      0   
0      0      0      x    
0      x      y      y    
0      x      y      z 

+ 0      x      y      z 
 0 
x 
y 
z 

0      x      y      z    
x      0      z      y 
y      z      0      x    
z      y      x      0 

+ 0      1      2      3 
0 
1 
2 
3 

0      1      2      3    
1      2      3      0    
2      3      0      1    
3      0      1      2 

. 0      x      y      z 
0 
x 
y 
z 

0      0      0      0   
0      1      0      1    
0      3      0      3    
0      2      0      2  
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4.3 Theorem: If 𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-ideal of S and 𝑓𝑓𝑇𝑇  be fuzzy SU-action on N-ideal of T over U, then  𝑓𝑓𝑠𝑠 × 𝑓𝑓𝑇𝑇  
is fuzzy SU-action on N-ideal over U×U. 
 
4.4 Theorem: If 𝑓𝑓𝑠𝑠 and ℎ𝑠𝑠 are two fuzzy SU-action on N-modules of S over U, then 𝑓𝑓𝑆𝑆 ∩� ℎS  is Fuzzy SU-action on    
N-ideal over U. 
 
5. APPLICATION OF FUZZY SU-ACTION ON N-MODULE 
 
In this section, we give the applications of fuzzy soft image, soft pre-image, lower 𝛼𝛼-inclusion of fuzzy soft sets and  
N-module homomorphism with respect to fuzzy SU-action on N-modules and N-ideals. 
 
5.1 Theorem: If 𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-ideal of S over U, then 𝑆𝑆𝑓𝑓={x ∈S / 𝑓𝑓𝑠𝑠(x)= 𝑓𝑓𝑠𝑠(0)} is a N-ideal of S. 
 
Proof: It is obvious that 0 ∈ 𝑆𝑆𝑓𝑓  we need to show that (i) x-y ∈ 𝑆𝑆𝑓𝑓 , (ii) s+x-s ∈ 𝑆𝑆𝑓𝑓  and (iii) n(s+x)-ns ∈ 𝑆𝑆𝑓𝑓  for all          
x, y ∈ 𝑆𝑆𝑓𝑓and n∈N and s∈S. 
 
If x,y∈ 𝑆𝑆𝑓𝑓 , then 𝑓𝑓𝑠𝑠(x)= 𝑓𝑓𝑠𝑠(y) = 𝑓𝑓𝑠𝑠(0). By proposition-3.1, 𝑓𝑓𝑠𝑠(0) ⊆ 𝑓𝑓𝑠𝑠(x-y), 𝑓𝑓𝑠𝑠(0) ⊆ 𝑓𝑓𝑠𝑠(s+x-s), and 𝑓𝑓𝑠𝑠(0) ⊆ 𝑓𝑓𝑠𝑠(n(s+x)-ns) 
for all x, y ∈ 𝑆𝑆𝑓𝑓and n∈N and s∈S. 
 
Since 𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-ideal of S over U, then for all x, y ∈ 𝑆𝑆𝑓𝑓and n∈N and s ∈ S. 

(i) 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x)∪ 𝑓𝑓𝑠𝑠(y) = 𝑓𝑓𝑠𝑠(0). 
(ii) 𝑓𝑓𝑠𝑠(s+x-s)⊆ 𝑓𝑓𝑠𝑠(x) =𝑓𝑓𝑠𝑠(0). 
(iii) 𝑓𝑓𝑠𝑠(n(s+x)-ns) ⊆ 𝑓𝑓𝑠𝑠(x) =𝑓𝑓𝑠𝑠(0). 

 
Hence 𝑓𝑓𝑠𝑠(x-y) = 𝑓𝑓𝑠𝑠(0), 𝑓𝑓𝑠𝑠(s+x-s) = 𝑓𝑓𝑠𝑠(0) and 𝑓𝑓𝑠𝑠(n(s+x)-ns) =𝑓𝑓𝑠𝑠(0), for all x, y ∈ 𝑆𝑆𝑓𝑓and n∈N and s ∈ S. 
 
Therefore 𝑆𝑆𝑓𝑓  is N-ideal of S. 
 
5.2 Theorem: Let 𝑓𝑓𝑠𝑠 be fuzzy soft set over U and 𝛼𝛼 be a subset of U such that ∅ ⊇𝛼𝛼 ⊇ 𝑓𝑓𝑠𝑠(0). If 𝑓𝑓𝑠𝑠 is fuzzy SU-action on 
N-ideal over U, then 𝑓𝑓𝑠𝑠

⊆𝛼𝛼 is an N-ideal of S. 
 
Proof: Since 𝑓𝑓𝑠𝑠(0) ⊆ 𝛼𝛼, then 0 ∈ 𝑓𝑓𝑠𝑠

⊆𝛼𝛼  and ∅ ≠ 𝑓𝑓𝑠𝑠
⊆𝛼𝛼  ⊇ S. Let x, y ∈ 𝑓𝑓𝑠𝑠

⊆𝛼𝛼 , then 𝑓𝑓𝑠𝑠(x) ⊆ 𝛼𝛼 and 𝑓𝑓𝑠𝑠(y) ⊆ 𝛼𝛼. We need to 
show that  

(i) x-y ∈ 𝑓𝑓𝑠𝑠
⊆𝛼𝛼  

(ii) s+x-s ∈ 𝑓𝑓𝑠𝑠
⊆𝛼𝛼  

(iii) n(s+x)-ns ∈ 𝑓𝑓𝑠𝑠
⊆𝛼𝛼  for all x,y ∈ 𝑓𝑓𝑠𝑠

⊆𝛼𝛼 and n∈N and s∈S. 
 
Since 𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-ideal over U, it follows that 

(i) 𝑓𝑓𝑠𝑠(x-y) ⊆ 𝑓𝑓𝑠𝑠(x)∪  𝑓𝑓𝑠𝑠(y) ⊆ 𝛼𝛼 ∪ 𝛼𝛼 =𝛼𝛼, 
(ii) 𝑓𝑓𝑠𝑠(s+x-s)⊆ 𝑓𝑓𝑠𝑠(x) ⊆ 𝛼𝛼 and 
(iii) (iii)𝑓𝑓𝑠𝑠(n(s+x)-ns) ⊆ 𝑓𝑓𝑠𝑠(x) ⊆ 𝛼𝛼. Thus, the proof is completed. 

 
5.3. Theorem: Let 𝑓𝑓𝑠𝑠 and 𝑓𝑓𝑇𝑇  be fuzzy soft sets over U and 𝜒𝜒 be an N-isomorphism from S to T. 
 
If 𝑓𝑓𝑠𝑠 is fuzzy SU-action on N-ideal of S over U, then 𝜒𝜒(𝑓𝑓𝑠𝑠) is fuzzy SU-action on N-ideal of T over U. 
 
Proof: Let 𝛿𝛿1, 𝛿𝛿2 and n∈ N. Since χ is surjective, there exists 𝑠𝑠1, 𝑠𝑠2 ∈ S such that χ(𝑠𝑠1) = 𝛿𝛿1 and χ(𝑠𝑠2)= 𝛿𝛿2. Then 

(χ𝑓𝑓𝑠𝑠) (𝛿𝛿1- 𝛿𝛿2) =∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, χ(s) = 𝛿𝛿1- 𝛿𝛿2} 
= ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, s = 𝜒𝜒−1(𝛿𝛿1- 𝛿𝛿2)} 
= ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, s = 𝜒𝜒−1(𝜒𝜒(𝑠𝑠1- 𝑠𝑠2))= 𝑠𝑠1- 𝑠𝑠2} 
= ∪ {𝑓𝑓𝑠𝑠(𝑠𝑠1- 𝑠𝑠2) / 𝑠𝑠𝑖𝑖 ∈ S, χ(𝑠𝑠𝑖𝑖) = 𝛿𝛿𝑖𝑖 , 𝑖𝑖 =1,2,…} 
⊆∪ {𝑓𝑓𝑠𝑠(𝑠𝑠1) ∪  𝑓𝑓𝑠𝑠(𝑠𝑠2)) / 𝑠𝑠𝑖𝑖 ∈ S, χ(𝑠𝑠𝑖𝑖) = 𝛿𝛿𝑖𝑖 , 𝑖𝑖 =1,2,…} 
= ��∪ {𝑓𝑓𝑠𝑠(𝑠𝑠1)/𝑠𝑠1 ∈  S, χ(𝑠𝑠1) =  𝛿𝛿1 }� ∪ �∪ {𝑓𝑓𝑠𝑠(𝑠𝑠2)/𝑠𝑠2 ∈ S, χ(𝑠𝑠2) =  𝛿𝛿2}�� 
= (χ(𝑓𝑓𝑠𝑠)) (𝛿𝛿1) ∪ (χ(𝑓𝑓𝑠𝑠)) (𝛿𝛿2) 

 
Also        (χ𝑓𝑓𝑠𝑠) (𝛿𝛿1+ 𝛿𝛿2-𝛿𝛿1) = ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, χ(s) = 𝛿𝛿1+ 𝛿𝛿2-𝛿𝛿1} 

= ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, s = 𝜒𝜒−1(𝛿𝛿1+ 𝛿𝛿2-𝛿𝛿1) } 
= ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, s = 𝜒𝜒−1(𝜒𝜒(𝑠𝑠1+ 𝑠𝑠2-𝑠𝑠1))= 𝑠𝑠1+ 𝑠𝑠2-𝑠𝑠1} 
= ∪ {𝑓𝑓𝑠𝑠(𝑠𝑠1+ 𝑠𝑠2-𝑠𝑠1) / 𝑠𝑠𝑖𝑖 ∈ S, χ(𝑠𝑠𝑖𝑖) = 𝛿𝛿𝑖𝑖 , 𝑖𝑖 =1,2,…} 
⊆ ∪ {𝑓𝑓𝑠𝑠(𝑠𝑠2)/𝑠𝑠2 ∈  S , χ(𝑠𝑠2) =  𝛿𝛿2 } 
= (χ(𝑓𝑓𝑠𝑠)) (𝛿𝛿2) 
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Furthermore, (χ𝑓𝑓𝑠𝑠) (n(𝛿𝛿1+ 𝛿𝛿2)-n𝛿𝛿1) = ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, χ(s) = n(𝛿𝛿1+ 𝛿𝛿2)-n𝛿𝛿1} 

= ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, s = 𝜒𝜒−1(n(𝛿𝛿1+ 𝛿𝛿2)-n𝛿𝛿1)} 
= ∪ {𝑓𝑓𝑠𝑠(s) / s∈ S, s = n(𝑠𝑠1+ 𝑠𝑠2)-n𝑠𝑠1} 
= ∪ {𝑓𝑓𝑠𝑠(n(𝑠𝑠1+ 𝑠𝑠2)-n𝑠𝑠1) / 𝑠𝑠𝑖𝑖 ∈ S , χ(𝑠𝑠𝑖𝑖) = 𝛿𝛿𝑖𝑖 , 𝑖𝑖 =1,2,…} 
⊆ ∪ {𝑓𝑓𝑠𝑠(𝑠𝑠2)/𝑠𝑠2 ∈ S, χ(𝑠𝑠2) = 𝛿𝛿2 } 
= (χ(𝑓𝑓𝑠𝑠)) (𝛿𝛿2). 

 
Hence χ(𝑓𝑓𝑠𝑠) is fuzzy SU-action on N-ideal of T over U. 
 
5.4 Theorem: Let 𝑓𝑓𝑠𝑠 and 𝑓𝑓𝑇𝑇  be fuzzy soft sets over U and 𝜒𝜒 be an N-isomorphism from S to T. 
 
If 𝑓𝑓𝑇𝑇  is fuzzy SU-action on N-ideal of T over U, then 𝜒𝜒−1(𝑓𝑓𝑇𝑇) is fuzzy SU-action on N-ideal of S over U. 
 
Proof:  Let 𝑠𝑠1, 𝑠𝑠2 ∈S and n∈ N. Then  

(𝜒𝜒−1(𝑓𝑓𝑇𝑇)) (𝑠𝑠1- 𝑠𝑠2) = 𝑓𝑓𝑇𝑇(χ (𝑠𝑠1- 𝑠𝑠2)) 
= 𝑓𝑓𝑇𝑇(χ (𝑠𝑠1)-χ(𝑠𝑠2)) 
⊆𝑓𝑓𝑇𝑇(χ (𝑠𝑠1)) ∪  𝑓𝑓𝑇𝑇(χ (𝑠𝑠2)) 
= (𝜒𝜒−1(𝑓𝑓𝑇𝑇))( 𝑠𝑠1) ∪ (𝜒𝜒−1(𝑓𝑓𝑇𝑇))( 𝑠𝑠2). 

 
Also         (𝜒𝜒−1(𝑓𝑓𝑇𝑇)) (𝑠𝑠1+𝑠𝑠2 − 𝑠𝑠1) = 𝑓𝑓𝑇𝑇(χ (𝑠𝑠1+𝑠𝑠2 − 𝑠𝑠1)) 

= 𝑓𝑓𝑇𝑇(χ (𝑠𝑠1)+χ(𝑠𝑠2) − 𝜒𝜒(𝑠𝑠1)) 
⊆ 𝑓𝑓𝑇𝑇(χ (𝑠𝑠2)) = (𝜒𝜒−1(𝑓𝑓𝑇𝑇)) (𝑠𝑠2) 

 
Furthermore,  (𝜒𝜒−1(𝑓𝑓𝑇𝑇)) (n(𝑠𝑠1+𝑠𝑠2) − n𝑠𝑠1) = 𝑓𝑓𝑇𝑇(χ (n(𝑠𝑠1+𝑠𝑠2) − n𝑠𝑠1)) 

= 𝑓𝑓𝑇𝑇(n(χ (𝑠𝑠1)+χ(𝑠𝑠2)) − n𝜒𝜒(𝑠𝑠1)) 
⊆ 𝑓𝑓𝑇𝑇(χ (𝑠𝑠2)) = (𝜒𝜒−1(𝑓𝑓𝑇𝑇)) (𝑠𝑠2) 

 
Hence, (𝜒𝜒−1(𝑓𝑓𝑇𝑇)) is fuzzy SU-action on N-ideal of S over U. 
 
CONCLUSION 
 
In this paper, we have defined a new type of N-module action on a fuzzy soft set, called fuzzy SU-action on N-module 
by using the soft sets. This new concept picks up the soft set theory, fuzzy theory and N-module theory together and 
therefore, it is very functional for obtaining results in the mean of N-module structure. Based on this definition, we 
have introduced the concept of fuzzy SU-action on N-ideal. We have investigated these notions with respect to soft 
image, soft pre-image and lower 𝛼𝛼-inclusion of soft sets. Finally, we give some application of fuzzy SU-action on       
N-ideal to N-module theory. To extend this study, one can further study the other algebraic structures such as different 
algebra in view of their SU-actions. 
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