FUZZY SOFT UNION ACTION ON N-MODULE AND N-IDEAL STRUCTURES

D. RADHA1, G. SUBBIAH2* AND M. NAVANEETHAKRISHNAN3

1Assistant Professor in Mathematics,
A. P. C. Mahalaxmi College for Women, Thoothukudi-628 002, Tamil Nadu, India.

2*Associate Professor in Mathematics,
Sri K.G.S. Arts College, Srivaikuntam-628 619, Tamil Nadu, India.

3Associate Professor in Mathematics,
Kamaraj College, Thoothukudi-628 003, Tamil Nadu, India.

(Received On: 28-09-16; Revised & Accepted On: 25-10-16)

ABSTRACT

In this paper, we define a new concept, called soft union action (SU) on N-module structures on a fuzzy soft set. This new notion gathers fuzzy theory, soft set theory and near-ring modulo theory (N-module theory) together and it shows how a fuzzy soft set effects on N-module structure in the mean of union and inclusion of sets. We then obtain its basic properties with illustrative examples and derive some analog of classical N-module theoretic concepts for SU-action on N-module. Finally, we give the application of SU-actions on N-module theory.

Keywords: Fuzzy set, soft set, fuzzy soft set, N-module SU-action, N-ideal SU-action, α-inclusion, pre-image, soft image.

AMS mathematics subject classification: 03E70, 58E40,

1. INTRODUCTION

Soft set theory was introduced in 1999 by Molodtsov [22] for dealing with uncertainties and it has gone through remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 25, 28]. Moreover, Atagun and Sezgin [4] defined the concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub modules of a module and studied their related properties with respect to soft set operations. Operations of soft sets have been studied by some authors, too. Maji et al. [19] presented some definitions on soft sets and based on the analysis of several operations on soft sets Ali et al. [3] introduced several operations of soft sets and Sezgin and Atagun [26] studied on soft set operations as well. Furthermore, soft set relations and functions [5] and soft mappings [21] with many related concepts were discussed. The theory of soft set has also a wide-ranging applications especially in soft decision making as in the following studies: [6, 7, 23, 29]. In this paper, we define a new concept, called soft union action (SU) on N-module structures on a fuzzy soft set. This new notion gathers fuzzy theory, soft set theory and near-ring modulo theory (N-module theory) together and it shows how a fuzzy soft set effects on N-module structure in the mean of union and inclusion of sets. We then obtain its basic properties with illustrative examples and derive some analog of classical N-module theoretic concepts for SU-action on N-module. Finally, we give the application of SU-actions on N-module theory.

2. PRELIMINARIES

In this section, we recall some basic notions relevant to near-ring modules (N-modules) and fuzzy soft sets. By a near-ring, we shall mean an algebraic system (N, +, .), where

(N1) (N, +) forms a group (not necessarily abelian)
(N2) (N, .) forms a semi group and
(N3) (x + y)z = xz + yz for all x, y, z ∈ N. (that is we study on right Near-ring modules)
Throughout this paper, N will always denote right near-ring. A normal subgroup H of N is called a left ideal of N if n(s+h)-ns ∈ H for all n, s ∈ N and h ∈ I and denoted by H@N. For a near-ring N, the zero-symmetric part of N denoted by N₀ is defined by N₀ = {n ∈ S / n=0}.

Let (S, +) be a group and A: N×S→S, (n,s)→s. (S, A) is called N-module or near-ring module if for all x, y ∈ N, for all s ∈ S.
(i) x(ys) = (xy)s. It is denoted by N^S. Clearly N itself is an N-module by natural operations. A subgroup T of N^S with N^T is said to be N-sub module of S and denoted by T ⊆ S. A normal subgroup T of N is called an N-ideal of N^S and denoted by a near-ring, S and χ two N-modules. Then h: S→χ is called an N-homomorphism if s,δ ∈ S, for all n ∈ N.
(ii) h(s+δ) = h(s)+h(δ) and
(ii) h(ns) = nh(s).

For all undefined concepts and notions we refer to (24). From now on, U refers to on initial universe, E is a set of parameters P(U) is the power set of U and A, B, C ∈ E.

2.1. Definition [22]: A pair (F, A) is called a soft set over U, where F is a mapping given by F: A→P(U).

In other words, a soft set over U is a parameterized family of subsets of the universe U.

Note that a soft set (F, A) can be denoted by FA. In this case, when we define more than one soft set in some subsets A, B, C of parameters E, the soft sets will be denoted by FA, FB, FC, respectively. On the other case, when we define more than one soft set in a subset A of the set of parameters E, the soft sets will be denoted by FA, GA, HA, respectively. For more details, we refer to [11, 17, 18, 26, 29, 7].

2.2. Definition [6]: The relative complement of the soft set FA over U is denoted by FA, where FA(a) = U \ FA(a), for all a ∈ A.

2.3. Definition [6]: Let FA and GB be two soft sets over U such that A ∩ B ≠ ∅. The restricted intersection of FA and GB is denoted by FA ∩ GB, and is defined as FA ∩ GB = (H, C), where C = A∩B and for all c ∈ C, H(c) = F(c) \ G(c).

2.4. Definition [6]: Let FA and GB be two soft sets over U such that A ∩ B ≠ ∅. The restricted union of FA and GB is denoted by FA∪GB, and is defined as FA∪GB = (H, C), where C = A∪B and for all c ∈ C, H(c) = F(c) ∪ G(c).

2.5. Definition [12]: Let FA and GB be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set ψ(FA) over U, where ψ(FA): A→P(U) is a set valued function defined by ψ(FA)(a) = U{F(a) | a ∈ A and ψ(a) = b}, if ψ⁻¹(b) ≠ ∅, = 0 otherwise for all b ∈ B. Here, ψ(FA) is called the soft image of FA under ψ. Moreover we can define a soft set ψ⁻¹(GB) over U, where ψ⁻¹(GB): A→P(U) is a set-valued function defined by ψ⁻¹(GB)(a) = G{ψ⁻¹(a)} for all a ∈ A. Then, ψ⁻¹(GB) is called the soft pre image (or inverse image) of GB under ψ.

2.6. Definition [13]: Let FA and GB be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set ψ(FA) over U, where ψ(FA): B→P(U) is a set-valued function defined by ψ(FA)(b) = U{F(a) | a ∈ A and ψ(a) = b}, if ψ⁻¹(b) ≠ ∅, = 0 otherwise for all b ∈ B. Here, ψ(FA) is called the soft anti image of FA under ψ.

2.7 Definition [8]: Let f_a be a soft set over U and α be a subset of U. Then, lower α-inclusion of a soft set f_a, denoted by f_a, is defined as f'_a = {x ∈ A: f_a(x) ⊆ α}

3. SU-ACTION ON N-MODULE STRUCTURES AND N-IDEAL STRUCTURES WITH FUZZY VERSION

In this section, we first define fuzzy soft union action, abbreviated as fuzzy SU-action on N-module and N-ideal structures with illustrative examples. We then study their basic results with respect to soft set operation.

3.1 Definition: Let S be an N-module and f_s be a fuzzy soft set over U, then f_s is called fuzzy SU-action on N-module over U if it satisfies the following conditions;
(FS(N-1)) f_s(x+y) ⊆ f_s(x) U f_s(y)
(FS(N-2)) f_s(-x) ⊆ f_s(x)
(FS(N-3)) f_s(nx) ⊆ f_s(x)

For all x, y ∈ S and n ∈ N.
3.1 Example: Consider the near-ring module $N = \{0, x, y, z\}$, be the near-ring under the operation defined by the following table:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td>z</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>z</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>y</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

Let $S = N$ and S be the set of parameters and $U = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} / a, b \in Z_2 \right\}$, 2X2 matrices with Z_2 terms, is the universal set. We construct a fuzzy soft set.

Then one can easily show that the soft set fs_x is a fuzzy SU-action on N-module.

3.1 Proposition: Let f_x be a fuzzy SU-action on N-module over U. Then, $f_x(0) \subseteq f_x(x)$ for all $x \in S$.

Proof: Assume that f_x is fuzzy SU-action over U. Then, for all $x \in S$, $f_x(0) = f_x(x-x) \subseteq f_x(x)$ and $f_x(x) = f_x(x) \cup f_x(x) = f_x(x)$. Conversely, assume that $f_x(x) \subseteq f_x(x)$ and $f_x(x) \subseteq f_x(x)$ for all $x, y \in S$ and $n \in N$.

3.1 Theorem: Let S be a fuzzy SU-action on N-module and f_x be a fuzzy soft set over U. Then f_x is SU-action of N-module over U if and only if

(i) $f_x(y-x) \subseteq f_x(x) \cup f_x(y)$

(ii) $f_x(nx) \subseteq f_x(x)$ for all $x, y \in S$.

Proof: Suppose f_x is a fuzzy SU-action on N-module over U. Then, by definition-3.1, $f_x(xy) \subseteq f_x(y)$ and $f_x(x-y) \subseteq f_x(x) \cup f_x(-y) = f_x(x) \cup f_x(y)$ for all $x, y \in S$.

Conversely, assume that $f_x(xy) \subseteq f_x(y)$ and $f_x(x-y) \subseteq f_x(x) \cup f_x(y)$ for all $x, y \in S$.

If we choose $x=0$, then $f_x(0-y) = f_x(-y) \subseteq f_x(0) \cup f_x(y) = f_x(y)$ by proposition-3.1. Similarly $f_x(y) = f_x(-y) \subseteq f_x(y)$, thus $f_x(-y) = f_x(y)$ for all $y \in S$. Also, by assumption $f_x(x-y) \subseteq f_x(x) \cup f_x(-y) = f_x(x) \cup f_x(y)$. This complete the proof.

3.2. Theorem: Let f_x be a fuzzy SU-action on N-module over U.

(i) If $f_x(x-y) = f_x(0)$ for any $x, y \in S$, then $f_x(x) = f_x(y)$.

(ii) $f_x(x+y) = f_x(0)$ for any $x, y \in S$, then $f_x(x) = f_x(y)$.

Proof: Assume that $f_x(x-y) = f_x(0)$ for any $x, y \in S$, then

$f_x(x) = f_x(x-y+y) \subseteq f_x(x-y) \cup f_x(y)$

and similarly

$f_x(y) = f_x(y-x+x) \subseteq f_x(y-x) \cup f_x(x)$

Thus, $f_x(x) = f_x(y)$ which completes the proof. Similarly, we can show the result (ii).

It is known that if S is an N-module, then $(S, +)$ is a group but not necessarily abelian. That is, for any $x, y \in S$, $x + y$ needs not be equal to $y + x$. However, we have the following:

3.3. Theorem: Let f_x be a fuzzy SU-action on N-module over U and $x \in S$. Then,

$f_x(x) = f_x(0) \iff f_x(x+y) = f_x(y+x) = f_x(y)$ for all $y \in S$.

Proof: Suppose that $f_x(x+y)$ = $f_x(y+x)$ = $f_x(y)$ for all $y \in S$. Then, by choosing $y = 0$,

We obtain that $f_x(x) = f_x(0)$.

Conversely, assume that $f_x(x) = f_x(0)$. Then by proposition-3.1, we have

$f_x(0) = f_x(x) \subseteq f_x(y), \forall y \in S$................. (1)
Since \(f_s \) is fuzzy SU-action on N-module over U, then
\[
\forall y \in S, \quad f_s(x+y) \subseteq f_s(x) \cup f_s(y) = f_s(y),
\]

Moreover, for all \(y \in S \)
\[
f_s(y) = f_s((-x)+y) = f_s(x+y-x) = f_s(x+y) \subseteq f_s(x) \cup f_s(y) = f_s(y) = f_s(x+y)
\]

Since by equation (1), \(f_s(x) \subseteq f_s(y) \) for all \(y \in S \) and \(x, y \in S \), implies that \(x+y \in S \). Thus, it follows that \(f_s(x) \subseteq f_s(x+y) \).

So \(f_s(x+y) = f_s(y) \) for all \(y \in S \).

Now, let \(x \in S \). Then, for all \(x, y \in S \)
\[
f_s(x+y) = f_s(y-x) = f_s(x+y-x) = f_s(x+y)
\]

Since \(f_s(x+y) = f_s(y) \). Furthermore, for all \(y \in S \)
\[
f_s(y) = f_s(y-x) = f_s(x+y-x) = f_s(x+y-y) = f_s(y-x)
\]

It follows that \(f_s(x+y) = f_s(y) \) and so \(f_s(x+y) = f_s(y) = f_s(x) \), for all \(y \in S \), which completes the proof.

3.4 Theorem: Let \(S \) be a near-field and \(f_s \) a fuzzy soft set over U. If \(f_s(0) \subseteq f_s(1) = f_s(x) \) for all \(0 \neq x \in S \), then it is fuzzy SU-action on N-module over U.

Proof: Suppose that \(f_s(0) \subseteq f_s(1) = f_s(x) \) for all \(0 \neq x \in S \). In order to prove that it is fuzzy SU-action on N-module over U, it is enough to prove that \(f_s(x-y) \subseteq f_s(x) \cup f_s(y) \) and \(f_s(nx) \subseteq f_s(x) \).

Let \(x, y \in S \). Then we have the following cases:

Case-1: Suppose that \(x \neq 0 \) and \(y = 0 \) or \(x = 0 \) and \(y \neq 0 \). Since \(S \) is a near-field, so it follows that \(nx=0 \) and \(f_s(nx) = f_s(0) \). Since \(f_s(0) \subseteq f_s(x) \), for all \(x \in S \), so \(f_s(nx) = f_s(0) \subseteq f_s(x) \), and \(f_s(nx) = f_s(0) \subseteq f_s(y) \). This implies \(f_s(nx) \subseteq f_s(x) \).

Case-2: Suppose that \(x \neq 0 \) and \(y \neq 0 \). It follows that \(nx \neq 0 \). Then, \(f_s(nx) = f_s(1) = f_s(x) \) and \(f_s(nx) = f_s(1) = f_s(y) \), which implies that \(f_s(nx) \subseteq f_s(x) \).

Case-3: Suppose that \(x = 0 \) and \(y = 0 \), then clearly \(f_s(nx) \subseteq f_s(x) \). Hence \(f_s(nx) \subseteq f_s(x) \), for all \(x, y \in S \).

Now, let \(x, y \in S \). Then \(x+y \neq 0 \). If \(x+y = 0 \), then either \(x = y = 0 \) or \(x \neq 0 \), \(y \neq 0 \) and \(x \neq y \).

But, since \(f_s(x-y) = f_s(0) \subseteq f_s(x) \), for all \(x \in N \), it follows that \(f_s(x-y) = f_s(0) \subseteq f_s(x) \cup f_s(y) \).

If \(x - y \neq 0 \), then either \(x \neq 0 \), \(y \neq 0 \) and \(x \neq y \) or \(x \neq 0 \) and \(y = 0 \) or \(x = 0 \) and \(y \neq 0 \).

Assume that \(x \neq 0 \), \(y \neq 0 \) and \(x \neq y \). This follows that
\[
f_s(x-y) = f_s(1) = f_s(x) \subseteq f_s(x) \cup f_s(y).
\]

Now, let \(x \neq 0 \) and \(y = 0 \). Then \(f_s(x-y) \subseteq f_s(x) \cup f_s(y) \). Finally, let \(x = 0 \) and \(y \neq 0 \).

Then, \(f_s(x-y) \subseteq f_s(x) \cup f_s(y) \). Hence \(f_s(x-y) \subseteq f_s(x) \cup f_s(y) \), for all \(x, y \in S \).

Thus, \(f_s \) is fuzzy SU-action on N-module over U.

3.5 Theorem: Let \(f_s \) and \(f_T \) be two fuzzy SU action on N-module over U. Then \(f_s \wedge f_T \) is fuzzy soft SU-action on N-module over U.

Proof: Let \((x_1, y_1), (x_2, y_2) \in S \times T \). Then
Note that.

3.2 Example: Assume \(U = p_3 \) is the universal set. Let \(S = Z_3 \) and \(H = \{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} / a, b \in Z_3 \} \) 2x2 matrices with \(Z_3 \) terms, be set of parameters. We define fuzzy SU-action on N-module \(f_S \) over \(U = p_3 \) by

\[
\begin{align*}
&f_S(0) = p_3 \\
&f_S(1) = \{(1),(1 2),(1 3 2)) \\
&f_S(2) = \{(1),(1 2),(1 2 3),(1 3 2)}
\end{align*}
\]

We define fuzzy SU-action on N-module \(f_H \) over \(U = p_3 \) by

\[
\begin{align*}
&f_H \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) = p_3 \\
&f_H \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) = \{(1),(1 2),(1 3 2)}
\end{align*}
\]

Note that \(f_S f_H \) is not fuzzy SU-action on N-module over \(U \).

3.2 Definition: Let \(f_S, g_T \) be fuzzy SU-action on N-module over \(U \). Then product of fuzzy SU-action on N-module \(f_S \) and \(g_T \) is defined as \(f_S \times g_T = h_{S\times T} \), where \(h_{S\times T}(x,y) = f_S(x) \times g_T(y) \) for all \((x, y) \in S \times T\).

3.6 Theorem: If \(f_S \) and \(g_T \) are fuzzy SU-action on N-module over \(U \). Then so is \(f_S \times g_T \) over \(U \times U \).

Proof: By definition-3.2, let \(f_S \times g_T = h_{S\times T} \), where \(h_{S\times T}(x,y) = f_S(x) \times g_T(y) \) for all \((x, y) \in S \times T\). Then for all \((x_1, y_1), (x_2, y_2) \in S \times T \) and \((n_1, n_2) = N \times N \).

\[
\begin{align*}
&h_{S\times T} \left((x_1, y_1) - (x_2, y_2) \right) = h_{S\times T} \left(x_1-x_2, y_1-y_2 \right) \\
&= f_S(x_1-x_2) \times g_T(y_1-y_2) \\
&\subseteq (f_S(x_1) \cup f_S(x_2)) \times (g_T(y_1) \cup g_T(y_2)) \\
&= (f_S(x_1) \times g_T(y_1)) \cup (f_S(x_2) \times g_T(y_2)) \\
&= h_{S\times T}(x_1, y_1) \cup h_{S\times T}(x_2, y_2)
\end{align*}
\]

\[
\begin{align*}
&h_{S\times T} \left((n_1, n_2)(x_2, y_2) \right) = h_{S\times T}(n_1x_2n_2y_2) \\
&= f_S(n_1x_2) \times g_T(n_2y_2) \\
&\subseteq f_S(n_1x_2) \times g_T(y_2) \\
&= h_{S\times T}(x_2, y_2)
\end{align*}
\]

Hence \(f_S \times g_T = h_{S\times T} \) is fuzzy SU-action on N-module over \(U \).

3.7 Theorem: If \(f_S \) and \(h_S \) are fuzzy SU-action on N-module over \(U \), then so is \(f_S \cap h_S \) over \(U \).

Proof: Let \(x, y \in S \) and \(n \in N \) then

\[
\begin{align*}
(f_S \cap h_S)(x-y) &= f_S(x-y) \cap h_S(x-y) \\
&\subseteq (f_S(x) \cup f_S(y)) \cap (h_S(x) \cup h_S(y)) \\
&= (f_S(x) \cap h_S(x)) \cup (f_S(y) \cap h_S(y)) \\
&= (f_S \cap h_S)(x) \cup (f_S \cap h_S)(y)
\end{align*}
\]
\[(f_S \cap h_S)(nx) = f_S(nx) \cap h_S(nx) \subseteq f_S(x) \cap h_S(x) = (f_S \cap h_S)(x)\]

Therefore, \((f_S \cap h_S)\) is fuzzy SU-action on N-module over U.

4. SU-ACTION ON N-IDEAL STRUCTURES

4.1 Definition: Let S be an N-module and \(f_S\) be a fuzzy soft set over U. Then \(f_S\) is called fuzzy SU-action on N-ideal of S over U if the following conditions are satisfied:

1. \(f_S(x + y) \subseteq f_S(x) \cup f_S(y)\)
2. \(f_S(-x) = f_S(x)\)
3. \(f_S(x + y - x) \subseteq f_S(y)\)
4. \(f_S(n(x + y) - nx) \subseteq f_S(y)\) for all \(x, y \in S\) and \(n \in N\).

Here, note that \(f_S(x + y) \subseteq f_S(x) \cup f_S(y)\) and \(f_S(-x) = f_S(x)\) imply \(f_S(x - y) \subseteq f_S(x) \cup f_S(y)\)

4.1 Example: Consider the near –ring \(N=\{0, x, y, z\}\) with the following tables

\[
\begin{array}{c|cccc}
+ & 0 & x & y & z \\
\hline
0 & 0 & x & y & z \\
x & x & 0 & y & z \\
y & y & z & 0 & x \\
z & z & y & x & 0 \\
\end{array}
\quad
\begin{array}{c|cccc}
. & 0 & x & y & z \\
\hline
0 & 0 & 0 & 0 & 0 \\
x & 0 & 0 & 0 & x \\
y & 0 & x & y & y \\
z & 0 & x & y & z \\
\end{array}
\]

Let \(S=N\) be the parameters and \(U=\text{D}_2\), dihedral group, be the universal set. We define a fuzzy soft set \(f_S\) over U by

\(f_S(0) = \text{D}_2\), \(f_S(x) = \{e, b, ba\}\), \(f_S(y) = \{a, b\}\), \(f_S(z) = \{b\}\).

Then, one can show that \(f_S\) is fuzzy SU-action on N-ideal of S over U.

4.2 Example: Consider the near –ring \(N=\{0, 1, 2, 3\}\) with the following tables

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{array}
\quad
\begin{array}{c|cccc}
. & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 & 0 \\
x & 0 & 1 & 0 & 1 \\
y & 0 & 3 & 0 & 3 \\
z & 0 & 2 & 0 & 2 \\
\end{array}
\]

Let \(S=N\) be the set of parameters and \(U=\text{Z}^+\) be the universal set. We define a fuzzy soft set \(f_S\) over U by

\(f_S(0) = \{1, 2, 3, 5, 6, 7, 9, 10, 11, 17\}\)
\(f_S(1) = f_S(3) = \{1, 3, 5, 7, 9, 11\}\)
\(f_S(2) = \{1, 5, 7, 9, 11\}\)

Since \(f_S(2.3 + 1) - 2.3 = f_S(2) - 2.3 = f_S(3) - 3 = f_S(0) \not\subseteq f_S(1)\)

Therefore, \(f_S\) is not fuzzy SU-action on N-ideal over U.

It is known that if N is a zero- symmetric near-ring, then every N-ideal of S is also N-module of S. Here, we have an analog for this case.

4.1 Theorem: Let N be a zero- symmetric near-ring. Then, every fuzzy SU-action on N-ideal is fuzzy SU-action on N-module over U.

Proof: Let \(f_S\) be an fuzzy SU-action on N-ideal on S over U. Since \(f_S(n(x+y)-nx) \subseteq f_S(y)\), for all \(x, y \in S\), and \(n \in N\), in particular for \(x=0\), it follows that \(f_S(n(0+y)-n.0) = f_S(ny-0) = f_S(y) \subseteq f_S(y)\).

Since the other condition is satisfied by definition-4.1, \(f_S\) is fuzzy SU-action on N-ideals of S over U.

4.2 Theorem: Let \(f_S\) be fuzzy SU-action on N-ideal of S and \(f_T\) be fuzzy SU-action on N-ideal of T over U. Then \(f_S \cap f_T\) is fuzzy SU-action on N-ideal of \(S \times T\) over U.
5.1 Theorem: If \(f_x \) is fuzzy SU-action on N-ideal of S and \(f_y \) be fuzzy SU-action on N-ideal of T over U, then \(f_x \times f_y \) is fuzzy SU-action on N-ideal over \(U \times U \).

5.4 Theorem: If \(f_x \) and \(h_x \) are two fuzzy SU-action on N-modules of S over U, then \(f_x \cap h_x \) is Fuzzy SU-action on N-ideal over U.

5. APPLICATION OF FUZZY SU-ACTION ON N-MODULE

In this section, we give the applications of fuzzy soft image, soft pre-image, lower \(\alpha \)-inclusion of fuzzy soft sets and N-module homomorphism with respect to fuzzy SU-action on N-modules and N-ideals.

5.1 Theorem: If \(f_x \) is fuzzy SU-action on N-ideal of S over U, then \(S^f = \{ x \in S / f_x(x) = f_x(0) \} \) is a N-ideal of S.

Proof: It is obvious that \(0 \in S^f \) we need to show that (i) \(x-y \in S^f \), (ii) \(s+x-s \in S^f \) and (iii) \(n(s+x) - ns \in S^f \) for all \(x, y \in S^f \) and \(n \in \mathbb{N} \) and \(s \in S \).

If \(x, y \in S^f \), then \(f_x(x) = f_x(0) \). By proposition-3.1, \(f_x(0) \subseteq f_x(x-y), f_x(0) \subseteq f_x(s+x-s), \) and \(f_x(0) \subseteq f_x(n(s+x)-ns) \) for all \(x, y \in S^f \) and \(n \in \mathbb{N} \) and \(s \in S \).

Since \(f_x \) is fuzzy SU-action on N-ideal of S over U, then for all \(x, y \in S^f \) and \(n \in \mathbb{N} \) and \(s \in S \).

(i) \(f_x(x-y) \subseteq f_x(0) \) and \(f_x(x-y) \subseteq f_x(s+x-s) \) and \(f_x(n(s+x)-ns) \subseteq f_x(0) \).

Hence \(f_x(x-y) = f_x(0), f_x(s+x-s) = f_x(0) \) and \(f_x(n(s+x)-ns) = f_x(0) \), for all \(x, y \in S^f \) and \(n \in \mathbb{N} \) and \(s \in S \).

Therefore \(S^f \) is N-ideal of S.

5.2 Theorem: Let \(f_x \) be fuzzy soft set over U and \(\alpha \) be a subset of U such that \(\emptyset \supseteq \alpha \subset f_x(0) \). If \(f_x \) is fuzzy SU-action on N-ideal over U, then \(f_x^{\subseteq \alpha} \) is an N-ideal of S.

Proof: Since \(f_x(0) \subseteq \alpha \), then \(0 \notin f_x^{\subseteq \alpha} \) and \(0 \neq f_x^{\subseteq \alpha} \subseteq S \). Let \(x, y \in f_x^{\subseteq \alpha} \), then \(f_x(x) \subseteq \alpha \) and \(f_x(y) \subseteq \alpha \). We need to show that

(i) \(x-y \in f_x^{\subseteq \alpha} \)
(ii) \(s+x-s \in f_x^{\subseteq \alpha} \)
(iii) \(n(s+x) - ns \in f_x^{\subseteq \alpha} \) for all \(x, y \in f_x^{\subseteq \alpha} \) and \(n \in \mathbb{N} \) and \(s \in S \).

Since \(f_x \) is fuzzy SU-action on N-ideal over U, it follows that

(i) \(f_x(x-y) \subseteq f_x(x) \cup f_x(y) \subseteq \alpha \)
(ii) \(f_x(s+x-s) \subseteq f_x(x) \subseteq \alpha \) and
(iii) \(f_x(n(s+x)-ns) \subseteq f_x(x) \subseteq \alpha \). Thus, the proof is completed.

5.3. Theorem: Let \(f_x \) and \(f_y \) be fuzzy soft sets over U and \(\chi \) be an N-isomorphism from S to T.

If \(f_x \) is fuzzy SU-action on N-ideal of S over U, then \(\chi(f_x) \) is fuzzy SU-action on N-ideal of T over U.

Proof: Let \(\delta_1 \), \(\delta_2 \) and \(n \in \mathbb{N} \). Since \(\chi \) is surjective, there exists \(s_1, s_2 \in S \) such that \(\chi(s_1) = \delta_1 \) and \(\chi(s_2) = \delta_2 \). Then

\[
(g_f)(\delta_1 - \delta_2) = U \{ f_x(s) / s \in S, \chi(s) = \delta_1 - \delta_2 \} = U \{ f_x(s) / s \in S, s = \chi^{-1}(\delta_1 - \delta_2) \} = U \{ f_x(s) / s \in S, s = \chi^{-1}(\chi(s_1 - s_2)) = s_1 - s_2 \} = U \{ f_x(s_1 - s_2) / s_1 \in S, \chi(s_1) = \delta_1, i = 1, 2, \ldots \} = U \{ f_x(s_1 - s_2) / s_1 \in S, \chi(s_1) = \delta_1, i = 1, 2, \ldots \} = U \{ f_x(s_1) / s_1 \in S, \chi(s_1) = \delta_1 \} \cup \{ f_x(s_2) / s_2 \in S, \chi(s_2) = \delta_2 \} = U \{ f_x(s_1) / s_1 \in S, \chi(s_1) = \delta_1 \} \cup \{ f_x(s_2) / s_2 \in S, \chi(s_2) = \delta_2 \} = (\chi(f_x))(\delta_1) \cup (\chi(f_x))(\delta_2)
\]

Also \((g_f)(\delta_1 + \delta_2 - \delta_1) = U \{ f_x(s) / s \in S, \chi(s) = \delta_1 + \delta_2 - \delta_1 \} = U \{ f_x(s) / s \in S, s = \chi^{-1}(\delta_1 + \delta_2 - \delta_1) \} = U \{ f_x(s) / s \in S, s = \chi^{-1}(\chi(s_1 + s_2) - s_1 - s_2) = s_1 - s_2 \} = U \{ f_x(s_1 + s_2 - s_1) / s_1 \in S, \chi(s_1) = \delta_1, i = 1, 2, \ldots \} = U \{ f_x(s_1) / s_1 \in S, \chi(s_1) = \delta_1 \} \cup \{ f_x(s_2) / s_2 \in S, \chi(s_2) = \delta_2 \} = (\chi(f_x))(\delta_1) \cup (\chi(f_x))(\delta_2) = (\chi(f_x))(\delta_2)\)
Furthermore, \((\chi f_s) (n(\delta_1 + \delta_2) - n\delta_1) = \cup \{f_s(s) / s \in S, \chi(s) = n(\delta_1 + \delta_2) - n\delta_1\}
= \cup \{f_s(s) / s \in S, s = \chi^{-1}(n(\delta_1 + \delta_2) - n\delta_1)\}
= \cup \{f_s(s) / s \in S, s = n(s_1 + s_2) - ns_1\}
= \cup \{f_s(n(s_1 + s_2) - ns_1) / s_1 \in S, \chi(s_1) = \delta_i, i = 1, 2, \ldots\}
\subseteq \cup \{f_s(s_2) / s_2 \in S, \chi(s_2) = \delta_2\}
= (\chi f_s)(\delta_2).

Hence \(\chi f_s\) is fuzzy SU-action on N-ideal of \(T\) over \(U\).

5.4 Theorem: Let \(f_s\) and \(f_T\) be fuzzy soft sets over \(U\) and \(\chi\) be an N-isomorphism from \(S\) to \(T\).

If \(f_T\) is fuzzy SU-action on N-ideal of \(T\) over \(U\), then \(\chi^{-1}(f_T)\) is fuzzy SU-action on N-ideal of \(S\) over \(U\).

Proof: Let \(s_1, s_2 \in S\) and \(n \in N\). Then
\[
(\chi^{-1}(f_T))(s_1 - s_2) = f_T(\chi(s_1 - s_2))
= f_T(\chi(s_1) - \chi(s_2))
\subseteq f_T(\chi(s_1)) \cup f_T(\chi(s_2))
= (\chi^{-1}(f_T))(s_1) \cup (\chi^{-1}(f_T))(s_2).
\]

Also
\[
(\chi^{-1}(f_T))(s_1 + s_2 - s_1) = f_T(\chi(s_1 + s_2 - s_1))
= f_T(\chi(s_1) + \chi(s_2) - \chi(s_1))
\subseteq f_T(\chi(s_2)) = (\chi^{-1}(f_T))(s_2).
\]

Furthermore,
\[
(\chi^{-1}(f_T))(n(s_1 + s_2) - ns_1) = f_T(\chi(n(s_1 + s_2) - ns_1))
= f_T(n(\chi(s_1) + \chi(s_2)) - n\chi(s_1))
\subseteq f_T(\chi(s_2)) = (\chi^{-1}(f_T))(s_2).
\]

Hence, \(\chi^{-1}(f_T)\) is fuzzy SU-action on N-ideal of \(S\) over \(U\).

CONCLUSION

In this paper, we have defined a new type of N-module action on a fuzzy soft set, called fuzzy SU-action on N-module by using the soft sets. This new concept picks up the soft set theory, fuzzy theory and N-module theory together and therefore, it is very functional for obtaining results in the mean of N-module structure. Based on this definition, we have introduced the concept of fuzzy SU-action on N-ideal. We have investigated these notions with respect to soft image, soft pre-image and lower \(\alpha\)-inclusion of soft sets. Finally, we give some application of fuzzy SU-action on N-ideal to N-module theory. To extend this study, one can further study the other algebraic structures such as different algebra in view of their SU-actions.

REFERENCES

28. Zou Y., Xiao Z., Data analysis approaches of soft sets under incomplete information, Knowl-Based Syst., 21(2008), 941-945.

Source of Support: Nil, Conflict of interest: None Declared

[Copyright © 2016, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]