KAVITA SHRIVASTAVA*
 Department of Mathematics, Dr. Harising Gour Central University, Sagar- (M.P.), India.

(Received On: 09-10-16; Revised \& Accepted On: 26-10-16)

Abstract

The intent of this paper is to initiate the concept of weak-compatibility and semi-compatibility in the context of fuzzy metric spaces. The follow-up investigations by many other mathematicians in due course established a lot of interesting results. Picked up some ideas from these results we established some common fixed point theorem on fuzzy metric space for four mappings which is the generalization of results of Som [2] and Mukherjee [1].

MAIN RESULT

Theorem 1: Let A, B, S and T be self mappings of a complete fuzzy metric space ($X, M, *$) satisfying
(a) $A(X) \subseteq T(X), B(X) \subseteq S(X)$,
(b) one of A or S is continuous,
(c) the pair (A, S) is semi-compatible and (B, T) is weak-compatible,
(d) $a M(A x, B y, t)-b M(S x, T y, t) \geq \phi\{M(S x, T y, t), M(S x, A x, t), M(S x, B y, t), M(T y, A x, t), M(T y, B y, t)\}$,
where $\phi:\left(R^{+}\right)^{5} \rightarrow R^{+}$is continuous and strictly increasing in each co-ordinate variable such that for all $x, y \in X, a<b$ +1 and for any $v<1, \phi\left(v, v, a, v, a_{2} v, v\right)>v, a_{1}+a_{2}=3$. Then A, B, S and T have a unique common fixed point in X.

Proof: Let x_{0} be any arbitrary point. Since $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$ then there exists $x_{1}, x_{2} \in X$ such that

$$
\mathrm{Ax}_{0}=\mathrm{Tx}_{1}=\mathrm{y}_{1}, \mathrm{Bx}_{1}=\mathrm{Sx}_{2}=\mathrm{y}_{2}
$$

Inductively, construct two sequences $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X such that

$$
\begin{aligned}
& \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Tx}_{2 \mathrm{n}+1}, \\
& \mathrm{y}_{2 \mathrm{n}+2}=\mathrm{Bx}_{2 \mathrm{n}+1}=\mathrm{Sx}_{2 \mathrm{n}+2} ; \quad \mathrm{n}=0,1,2,3, \ldots
\end{aligned}
$$

Let $M_{n}=M\left(y_{n}, y_{n+1}, t\right) ; n=0,1,2,3, \ldots$
We claim that $\left\{M_{n}\right\}$ is a increasing sequence, suppose on the contrary that $M_{2 n}>M_{2 n+1}$, for some n.
Putting $x=x_{2 n}$ and $y=x_{2 n+1}$ in (d), we get

$$
\begin{aligned}
& a M\left(A x_{2 n}, B x_{2 n+1}, t\right)-b M\left(S x_{2 n}, T x_{2 n+1}, t\right) \geq \phi\left\{M\left(S x_{2 n}, T x_{2 n+1}, t\right), M\left(S x_{2 n}, A x_{2 n}, t\right), M\left(S x_{2 n}, B x_{2 n+1}, t\right),\right. \\
& \left.\mathrm{M}\left(\mathrm{Tx}_{2 \mathrm{n}+1}, A x_{2 n}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Tx}_{2 \mathrm{n}+1}, A x_{2 n+1}, \mathrm{t}\right)\right\} . \\
& \Rightarrow \quad a M\left(y_{2 n+1}, y_{2 n+2}, t\right)-b M\left(y_{2 n}, y_{2 n+1}, t\right) \geq \phi\left\{M\left(y_{2 n}, y_{2 n+1}, t\right), M\left(y_{2 n}, Y_{2 n+1}, t\right), M\left(y_{2 n}, y_{2 n+2}, t\right)_{2}\right. \\
& \left.\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{Y}_{2 \mathrm{n}+2}\right)\right\} \\
& \Rightarrow \quad \mathrm{aM}_{2 \mathrm{n}+1}-\mathrm{b} \mathrm{M}_{2 \mathrm{n}} \geq \phi\left\{\mathrm{M}_{2 \mathrm{n}}, \mathrm{M}_{2 \mathrm{n}}, \mathrm{M}_{2 \mathrm{n}}+\mathrm{M}_{2 \mathrm{n}+1}, 1, \mathrm{M}_{2 \mathrm{n}+1}\right\} \\
& >\phi\left\{\mathrm{M}_{2 \mathrm{n}+1}, \mathrm{M}_{2 \mathrm{n}+1}, 2 \mathrm{M}_{2 \mathrm{n}+1}+\mathrm{M}_{2 \mathrm{n}+1}, \mathrm{M}_{2 \mathrm{n}+1}\right\} \\
& >\mathrm{M}_{2 \mathrm{n}+1} \\
& \Rightarrow \quad M_{2 n+1}>\frac{b}{a-1} M_{2 n} \\
& \Rightarrow \quad \mathrm{M}_{2 \mathrm{n}+1}>\mathrm{M}_{2 \mathrm{n}} \quad[\because \mathrm{a}<\mathrm{b}+1]
\end{aligned}
$$

which is a contradiction.

Thus $\left\{\mathrm{M}_{\mathrm{n}}\right\}$ is increasing sequence of positive real number in $[0,1]$ and therefore $\lim _{n \rightarrow \infty} M_{n}=1$.
Now, we show that $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a cauchy sequence. Since $\lim _{n \rightarrow \infty} M_{n}=1$, it is sufficient to show that $\left\{\mathrm{y}_{2 \mathrm{n}}\right\}$ is a cauchy sequence.

Suppose that it is not so, then there is an $\varepsilon>0$ such that for each integer $2 \mathrm{k}(\mathrm{k}=0,1,2, \ldots)$ there exists even integer 2 nk and 2 mk with $2 \mathrm{k}<2 \mathrm{nk}<2 \mathrm{mk}$ such that

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t}\right) \leq 1-\varepsilon ; \text { for some } \mathrm{t}>0 \tag{1}
\end{equation*}
$$

Let for each even integer 2 k , 2 mk be the least positive integer exceeding 2 nk satisfying (1), then

$$
\begin{align*}
& \mathrm{M}\left(\mathrm{y}_{2 n k}, \mathrm{y}_{2 \mathrm{mk}-2}, \mathrm{t}\right)>1-\varepsilon \text { and } \\
& \mathrm{M}\left(\mathrm{y}_{2 n k}, \mathrm{y}_{2 m \mathrm{~m}}, \mathrm{t}\right) \leq 1-\varepsilon . \tag{2}
\end{align*}
$$

As such, for each even integer $2 k$, we have

$$
1-\varepsilon>M\left(y_{2 n k}, y_{2 m k}, t\right) \geq M\left(y_{2 n k}, y_{2 m k-2}, t / 3\right) * M\left(y_{2 m k-2}, y_{2 m k-1}, t / 3\right) * M\left(y_{2 m k-1}, y_{2 m k}, t / 3\right)
$$

So by (2) and as $\mathrm{k} \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t}\right)=1-\varepsilon . \tag{3}
\end{equation*}
$$

Now, using (3) in the triangular inequalities

$$
\mathrm{M}\left(\mathrm{y}_{2 n k}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t}\right) \geq \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t} / 2\right) * \mathrm{M}\left(\mathrm{y}_{2 \mathrm{mk}}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t} / 2\right)
$$

and

$$
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t}\right) \geq \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{nk}}, \mathrm{t} / 3\right) * \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t} / 3\right) * \mathrm{M}\left(\mathrm{y}_{2 \mathrm{mk}}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t} / 3\right)
$$

Taking $\mathrm{k} \rightarrow \infty$, then

$$
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t}\right) \geq 1-\varepsilon * 1=1-\varepsilon
$$

and

$$
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t}\right) \geq 1 * 1-\varepsilon * 1=1-\varepsilon
$$

Then

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}\right) \geq \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{t} / 2\right) \quad * \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t} / 2\right) \\
& =\mathrm{M}\left(\mathrm{y}_{2 n \mathrm{k}}, \mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{t} / 2\right) * \mathrm{M}\left(\mathrm{Bx}_{2 \mathrm{nk}}, \mathrm{Ax}_{2 m k-1}, \mathrm{t} / 2\right) \\
& >\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{t} / 2\right) * \frac{1}{a} \varphi \frac{\partial^{2} \Omega}{\partial u^{2}}\left\{\mathrm{M}\left(\mathrm{Sx}_{2 \mathrm{mk}-1}, \mathrm{Tx}_{2 \mathrm{nk}}, \mathrm{t} / 2\right),\right. \\
& \mathrm{M}\left(\mathrm{Sx}_{2 m \mathrm{~m}-1}, \mathrm{Ax}_{2 \mathrm{mk}-1}, \mathrm{t} / 2\right), \mathrm{M}\left(\mathrm{Sx}_{2 m k-1}, \mathrm{Bx}_{2 \mathrm{nk}}, \mathrm{t} / 2\right) \text {, } \\
& \mathrm{M}\left(\mathrm{Tx}_{2 n k}, \mathrm{Ax}_{2 m k-1}, \mathrm{t} / 2\right), \mathrm{M}\left(\mathrm{Tx}_{2 n k}, B x_{2 n k}, \mathrm{t} / 2\right\}+\frac{b}{a} \mathrm{M}\left(\mathrm{Sx}_{2 m k-1}, \mathrm{Tx}_{2 \mathrm{nk},} \mathrm{t} / 2\right) \\
& \geq \mathrm{M}\left(\mathrm{y}_{2 n k}, \mathrm{y}_{2 n k+1}, \mathrm{t} / 2\right) * \frac{1}{a} \varphi\left\{\mathrm{M}\left(\mathrm{y}_{2 m k-1}, \mathrm{y}_{2 n k}, \mathrm{t} / 2\right), \mathrm{M}\left(\mathrm{y}_{2 m k-1}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t} / 2\right),\right. \\
& \mathrm{M}\left(\mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{t} / 2\right), \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t} / 2\right),\left\{\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{nk}+1}\right\}+\frac{b}{a} \mathrm{M}\left(\mathrm{y}_{2 m k-1}, \mathrm{y}_{2 n \mathrm{k}}, \mathrm{t} / 2\right) .\right.
\end{aligned}
$$

On taking $\mathrm{k} \rightarrow \infty$

$$
\begin{aligned}
1-\varepsilon & \geq \frac{1}{a} \varphi\{1-\varepsilon, 0,1-\varepsilon, 1-\varepsilon, 0\}+\frac{b}{\mathrm{a}}(1-\varepsilon) \\
& >\frac{1}{\mathrm{a}}(1-\varepsilon)+\frac{\mathrm{b}}{\mathrm{a}}(1-\varepsilon)=\frac{1+\mathrm{b}}{\mathrm{a}}(1-\varepsilon)
\end{aligned}
$$

$$
\Rightarrow 1-\varepsilon>1-\varepsilon
$$

which is a contradiction.
Hence $\left\{y_{2_{n}}\right\}$ is a cauchy sequence in X. By completeness of $X,\left\{y_{n}\right\}$ converges to $z \in X$. Hence, the subsequences

$$
\begin{equation*}
\left\{\mathrm{Ax}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z},\left\{\mathrm{Sx}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\mathrm{Tx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z},\left\{\mathrm{Bx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z} \tag{5}
\end{equation*}
$$

Since the limit of a sequence in fuzzy metric space is unique we obtain that

$$
\mathrm{Az}=\mathrm{Sz}
$$

Step-1: Now, we will prove that $\mathrm{Az}=\mathrm{z}$. Suppose on the contrary $\mathrm{Az} \neq \mathrm{z}$.
By putting $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (d) we have

$$
\begin{aligned}
a M\left(A z, B x_{2 n+1}, t\right)-b M\left(S z, T x_{2 n+1}, t\right) \geq \phi & \left\{M\left(S z, T x_{2 n+1}, t\right), M(S z, A z, t), M\left(S z, B x_{2 n+1}, t\right), M\left(T x_{2 n+1}, A z, t\right)\right. \\
& \left.M\left(T x_{2 n+1}, B x_{2 n+1}, t\right)\right\}
\end{aligned}
$$

$\Rightarrow \quad a M(A z, z, t)-b M(A z, z, t) \geq \phi\{M(A z, z, t), M(A z, A z, t), M(A z, z, t), M(z, A z, t), M(z, z, t)\}$ $\geq \phi\{M(A z, z, t), 1, M(A z, z, t), M(A z, z, t), 1\}$ $\geq \phi\{\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), 2 \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})\}$
$\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})>\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})$
which is a contradiction.
Hence $\mathrm{z}=\mathrm{Az}=\mathrm{Sz}$.
Step-2: Since $A(X) \subseteq T(X)$, there exists $u \in X$ such that $\mathrm{z}=\mathrm{Az}=\mathrm{Tu}$.

Now, we have to prove that $\mathrm{z}=\mathrm{Bu}$, suppose on the contrary that $\mathrm{z} \neq \mathrm{Bu}$
Putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}, \mathrm{y}} \mathrm{y}=\mathrm{u}$ in (d) we get.
$a M\left(A x_{2 n}, B u, t\right)-b M\left(S x_{2 n}, T u, t\right) \geq \phi\left\{M\left(S x_{2 n}, T u, t\right), M\left(S x_{2 n}, A x_{2 n}, t\right), M\left(S x_{2 n}, B u, t\right), M\left(T u, A x_{2 n}, t\right), M(T u, B u, t)\right\}$.

On taking limit as $\mathrm{n} \rightarrow \infty$ and using (4) we obtain that

$$
\mathrm{aM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})-\mathrm{bM}(\mathrm{z}, \mathrm{z}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})\}
$$

$\Rightarrow \quad \mathrm{aM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})-\mathrm{b} \geq \phi\{1,1, \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}) 1, \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})\}$
$\mathrm{aM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})-\mathrm{bM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})>\phi\{\mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), 2 \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})\}$
(a - b) M(z, Bu, t) >M(z, Bu, t)
which is a contradiction.
Hence $\quad \mathrm{z}=\mathrm{Bu}=\mathrm{Tu}$ and the weak compatibility of (B, T) gives

$$
\mathrm{TBu}=\mathrm{Btu}
$$

i.e. $\mathrm{Tz}=\mathrm{Bz}$

Step-3: By putting $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{z}$ in (d) and assuming $\mathrm{Az} \neq \mathrm{Bz}$, we have.

$$
\mathrm{aM}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})-\mathrm{bM}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}, \mathrm{Bz}, \mathrm{t})\}
$$

$\Rightarrow \quad a M(A z, B z, t)-b M(A z, B z, t) \geq \phi\{M(A z, B z, t), M(A z, A z, t), M(A z, B z, t), M(B z, A z, t), M(T z, T z, t)\}$
$\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), 1,(\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), 1\}$

$$
>\phi\{\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), 2 \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})\}
$$

$\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})>\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})$
Which is a contradiction. Hence $\mathrm{Az}=\mathrm{Bz}$.
Combining the result from Steps 1, 2, $\mathbf{3}$ we obtain that

$$
\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}
$$

Therefore z is a common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .

Case-2: S is continuous
As S is continuous and (A, S) is semi-compatible, we have.

$$
\begin{equation*}
\mathrm{SAx}_{2 \mathrm{n}} \rightarrow \mathrm{Sz}, \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}} \rightarrow \mathrm{Sz}, \mathrm{ASx}_{2 \mathrm{n}} \rightarrow \mathrm{Sz} \tag{6}
\end{equation*}
$$

Thus, $\lim _{n \rightarrow \infty} S A x_{2 n}=\lim _{n \rightarrow \infty} A S x_{2 n}=S z$
We prove $\mathrm{Sz}=\mathrm{z}$, suppose on the contrary that $\mathrm{Sz} \neq \mathrm{z}$.
Step-4: Putting $x=S x_{2 n}, y=x_{2 n+1}$ in (d)

$$
\begin{aligned}
a M\left(A S x_{2 n}, B x_{2 n+1}, t\right)-b M\left(S S x_{2 n}, T x_{2 n+1}, t\right) \geq \phi & \left\{M\left(S S x_{2 n}, T x_{2 n+1}, t\right), M\left(S S x_{2 n}, A S x_{2 n}, t\right), M\left(S S x_{2 n}, B x_{2 n+1}, t\right),\right. \\
& \left.M\left(T x_{2 n+1}, A S x_{2 n}, t\right), M\left(T x_{2 n+1}, B x_{2 n+1}, t\right)\right\}
\end{aligned}
$$

$\Rightarrow \quad a M(S z, z, t)-b M(S z, z, t) \geq \phi\{M(S z, z, t), M(S z, S z, t), M(S z, z, t), M(z, S z, t), M(z, z, t)\}$

$$
\geq \phi\{\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), 1\}
$$

$$
\geq \phi\{\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), 2 \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})\}
$$

$\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})>\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})$
which is a contradiction. Hence $\mathrm{Sz}=\mathrm{z}$.
Step-5: By putting $x=z, y=x_{2 n+1}$ in (d)
$\operatorname{aM}\left(A z, B x_{2 n+1}, t\right)-b M\left(S z, T x_{2 n+1}, t\right) \geq \phi\left\{M\left(S z, T x_{2 n+1}, t\right), M(S z, A z, t), M\left(S z, B x_{2 n+1}, t\right), M\left(T x_{2 n+1}, A z, t\right)\right.$, $\left.\mathrm{M}\left(\mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}$
$\Rightarrow \quad a M(A z, z, t)-b M(z, z, t) \geq \phi\{M(z, z, t), M(z, A z, t), M(z, z, t), M(z, A z, t), M(z, z, t)\}$
$\Rightarrow \quad a M(A z, z, t)-b \geq \phi\{1, M(A z, z, t), 1, M(A z, z, t), 1)$
$\Rightarrow \quad a M(A z, z, t)-b(A z, z, t)>\phi\{M(A z, z, t), M(A z, z, t), 2 M(A z, z, t), M(A z, z, t), M(A z, z, t)\}$
$\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})>\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})$
Which is a contradiction.
Hence $A z=z=S z$.
Also $\quad \mathrm{Bz}=\mathrm{Tz}=\mathrm{z}$ follows from step $\mathbf{1 , 2}$ we get that $\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}$.

Hence z is a common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .

UNIQUENESS

Let z_{1} and z_{2} be two common fixed points of the $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .
Then $\mathrm{z}_{1}=\mathrm{Az}_{1}=\mathrm{Bz}_{1}=\mathrm{Sz}_{1}=\mathrm{Tz}_{1}$ and $\mathrm{z}_{2}=\mathrm{Az}_{2}=\mathrm{Bz}_{2}=\mathrm{Sz}_{2}=\mathrm{Tz}_{2}$.
Suppose $z_{1} \neq z_{2}$. From (d), we have

$$
\begin{aligned}
\mathrm{aM}\left(\mathrm{Az}_{1}, \mathrm{Bz} z_{2}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{Sz}_{1}, \mathrm{Tz} z_{2}, \mathrm{t}\right) \geq \phi & \left\{\mathrm{M}\left(\mathrm{Sz}_{1}, \mathrm{Tz}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Sz}_{1}, A z_{1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Sz}_{1}, \mathrm{Bz}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Tz}_{2}, A z_{1}, \mathrm{t}\right),\right. \\
& \left.\mathrm{M}\left(\mathrm{Tz}_{2}, \mathrm{Bz}, \mathrm{t}\right)\right\}
\end{aligned}
$$

$\Rightarrow \quad a M\left(z_{1}, z_{2}, t\right)-b M\left(z_{1}, z_{2}, t\right) \geq \phi\left\{M\left(z_{1}, z_{2}, t\right), M\left(z_{1}, z_{1}, t\right), M\left(z_{1}, z_{2}, t\right), M\left(z_{2}, z_{1}, t\right), M\left(z_{2}, z_{2}, t\right)\right\}$
$\geq \phi\left\{\mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), 1, \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{2}, \mathrm{z}_{1}, \mathrm{t}\right), 1\right\}$
$>\phi\left\{\mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), 2 \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{2}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right)\right\}$
$\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right)>\mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right)$
which is a contradiction. Hence $z_{1}=z_{2}$.
Thus z is a unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .

REFERENCES

1. Mukherjee, R.N.: Indian J. pure Appl. Math. 12(8) (1981), 930.
2. Som, T. : Few common fixed points for comparative mappings, Bull. Cal. Math. Soc., 95(4) (2003), 307-312.
3. Som, T. and Mukherjee, R.N.: A fixed point theorems for two non-self mapping, Proc. Acad. Sci. India, 56(111), (1986).

Source of Support: Nil, Conflict of interest: None Declared
[Copy right © 2016, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

