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ABSTRACT  

A generic definition for the well known class of magic squares-strongly magic square is given and ring structure of 
strongly magic squares is discussed. In this paper strongly magic squares are proved to have a ring structure and some 
particular strongly magic squares form commutative ring with unity. The paper also covers field structure of strongly 
magic squares.  
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I. INTRODUCTION 
 
A normal magic square is a square array of consecutive numbers from 1 … 𝑛𝑛2where the rows and column add up to the 
same number [1]. The constant sum is called magic constant or magic number. Along with the conditions of normal 
magic squares, SMS of order 4 will have a stronger property that the sum of the entries of the 2 × 2 subsquares taken 
without any gaps between the rows or columns is also the magic constant [2]. There are many recreational aspects of 
stronglymagic squares. But, apart from the usual recreational aspects, it is found that these strongly magic squares 
possessadvanced mathematical structures. 
 
II. NOTATIONS AND MATHEMATICALPRELIMINARIES 
 
(A) Magic Square: A magic square of order n over a field 𝑅𝑅  is an nth order matrix [𝑎𝑎𝑖𝑖𝑖𝑖 ]  with entries in 𝑅𝑅 such that 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 =   𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑖𝑖 = 1,2, … . .𝑛𝑛                                                                                                                          (1) 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 =   𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑖𝑖 = 1,2, … . .𝑛𝑛                                                                                                                           (2) 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝜌𝜌,   �𝑎𝑎𝑖𝑖 ,𝑛𝑛−𝑖𝑖+1

𝑛𝑛

𝑖𝑖=1

=  𝜌𝜌                                                                                                                           (3) 

 
Equation (1) represents the row sum, equation (2) represents the column sum, equation (3) represents the diagonal and 
co-diagonal sum and symbol 𝜌𝜌 represents the magic constant. [3]. 
 
(B) Magic Constant: The constant𝜌𝜌in the above definition is known as the magic constant or magic number. The 

magic constant of the magic square A is denoted as 𝜌𝜌(𝐴𝐴). 
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(C) Strongly magic square (SMS): Generic Definition: A strongly  magic square over a field 𝑅𝑅  is a matrix [𝑎𝑎𝑖𝑖𝑖𝑖 ] of 

order 𝑛𝑛2 × 𝑛𝑛2 with entries in 𝑅𝑅 such that 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

= 𝜌𝜌   𝜌𝜌𝜌𝜌𝜌𝜌   𝑖𝑖 = 1,2, … . .𝑛𝑛2                                                                                                                     (4) 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

= 𝜌𝜌    𝜌𝜌𝜌𝜌𝜌𝜌   𝑖𝑖 = 1,2, … . .𝑛𝑛2                                                                                                                     (5) 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

= 𝜌𝜌,    �𝑎𝑎𝑖𝑖 ,𝑛𝑛2−𝑖𝑖+1

𝑛𝑛2

𝑖𝑖=1

=  𝜌𝜌                                                                                                                        (6) 

��𝑎𝑎𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛−1

𝑙𝑙=0

= 𝜌𝜌  𝜌𝜌𝜌𝜌𝜌𝜌  𝑖𝑖, 𝑖𝑖 = 1,2, … . .𝑛𝑛2                                                                                                    (7) 

𝑤𝑤ℎ𝑒𝑒𝜌𝜌𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜌𝜌𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠 𝑎𝑎𝜌𝜌𝑒𝑒 𝐶𝐶𝜌𝜌𝑛𝑛𝐶𝐶𝜌𝜌𝑠𝑠𝑒𝑒𝑛𝑛𝑡𝑡 𝑚𝑚𝜌𝜌𝑚𝑚𝑠𝑠𝑙𝑙𝜌𝜌𝑛𝑛2 
 
Equation (4) represents the row sum, equation (5) represents the column sum, equation (6) represents the diagonal & 
co-diagonal sum, equation (7) represents the 𝑛𝑛 × 𝑛𝑛 sub-square sum with no gaps in between the elements of rows or 
columns and is denoted as 𝑀𝑀0𝐶𝐶

(𝑛𝑛)𝜌𝜌𝜌𝜌𝑀𝑀0𝑅𝑅
(𝑛𝑛)and𝜌𝜌 is the magic constant. 

 
Note: The nth  order subsquare sum with k column gaps or  k row gaps  is generally denoted as MkC

(n) or MkR
(n)  

respectively. 
 
(D) Group: A group (𝐺𝐺,∗) is a nonempty set 𝐺𝐺closed under a binary operation ∗such that the following axioms are 

satisfied 
(i) ∗is associative in 𝐺𝐺. ie, 𝑎𝑎 ∗ (𝑠𝑠 ∗ 𝑠𝑠) = (𝑎𝑎 ∗ 𝑠𝑠) ∗ 𝑠𝑠 ,∀ 𝑎𝑎, 𝑠𝑠, 𝑠𝑠 ∈ 𝐺𝐺 
(ii) ∃ 𝑒𝑒 ∈ 𝐺𝐺, such that 𝑒𝑒 ∗ 𝑎𝑎 = 𝑎𝑎 ∗ 𝑒𝑒,∀ 𝑎𝑎 ∈ 𝐺𝐺, where 𝑒𝑒  is the identity element. 
(iii) Corresponding to each 𝑎𝑎 ∈ 𝐺𝐺,∃ 𝑠𝑠 ∈ 𝐺𝐺   such that 𝑎𝑎 ∗ 𝑠𝑠 = 𝑠𝑠 ∗ 𝑎𝑎 = 𝑒𝑒, where 𝑠𝑠 is the inverse of 𝑎𝑎 [4,5] 

 
(E) Abelian Group: A group 𝐺𝐺 is abelian if its binary operation ∗ is commutative. [4] 
 
(F) Rings: A non-empty set 𝑅𝑅  together with two binary operations +  and ∙  called addition and multiplication 

respectively is called a ring denoted as < 𝑅𝑅, +,∙> if the following axioms are satisfied. 
i. < 𝑅𝑅, +>is an abelian group. 

ii. Multiplication is associative., i.e., 𝑎𝑎 . (𝑠𝑠. 𝑠𝑠) = (𝑎𝑎. 𝑠𝑠). 𝑠𝑠 ∀ 𝑎𝑎, 𝑠𝑠, 𝑠𝑠 ∈ 𝑅𝑅 
iii. Multiplication is distributive with respect to the addition, i.e., 𝑎𝑎. (𝑠𝑠 + 𝑠𝑠) = 𝑎𝑎. 𝑠𝑠 + 𝑎𝑎. 𝑠𝑠 (Left distributive law) 

and (𝑠𝑠 + 𝑠𝑠). 𝑎𝑎 = 𝑠𝑠. 𝑎𝑎 + 𝑠𝑠. 𝑎𝑎 (Right distributive law) [4] 
 
(G) Commutative Ring: A ring in which the multiplication is commutative is called a commutative ring. A ring with a 

multiplicative identity element 1 is called a ring with unity.  [4] 
 
(H) Field: A ring 𝑅𝑅 with at least two elements is called a field if it  

i. is commutative 
ii. has unity 

iii. is such that each non zero element possesses multiplicative inverse.[4] 
 
(I) Other Notations: 

1. 𝑆𝑆𝑀𝑀𝑠𝑠 denote the set of all strongly magic squares of order 𝑛𝑛2 × 𝑛𝑛2 
2. 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎)  denote the set of all strongly magic squares of the form �𝑎𝑎𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2  such that 𝑎𝑎𝑖𝑖𝑖𝑖 =  𝑎𝑎  for every  

𝑖𝑖, 𝑖𝑖 = 1,2, … 𝑛𝑛2.  Here A is denoted as [𝑎𝑎], i.e. If 𝐴𝐴 ∈ 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎)  then 𝜌𝜌(𝐴𝐴) =  𝑛𝑛2𝑎𝑎 
3. 𝑆𝑆𝑀𝑀𝑆𝑆(0)denote the set of all strongly magic squares of order 𝑛𝑛2 × 𝑛𝑛2 with magic constant 0,  i.e. If 𝐴𝐴 ∈ 𝑆𝑆𝑀𝑀𝑆𝑆(0) 

then 𝜌𝜌(𝐴𝐴) =  0 
 

III. PROPOSITIONS AND THEOREMS 
 
Proposition 1: If 𝐴𝐴 and 𝐵𝐵 are two SMS’s of order 𝑛𝑛2 × 𝑛𝑛2 with 𝜌𝜌(𝐴𝐴) = 𝑎𝑎 and 𝜌𝜌(𝐵𝐵) =  𝑠𝑠, then 𝐶𝐶 = (𝜆𝜆 + 𝜇𝜇 )(𝐴𝐴 + 𝐵𝐵) is 
also a SMS with magic constant (𝜆𝜆 + 𝜇𝜇 )�𝜌𝜌(𝐴𝐴) +  𝜌𝜌(𝐵𝐵)�; for every 𝜆𝜆, 𝜇𝜇  𝜖𝜖 𝑅𝑅 
 
Proof: Let𝐴𝐴 =  �𝑎𝑎𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2 and  𝐵𝐵 =  �𝑠𝑠𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2  
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Then𝐶𝐶 =  (𝜆𝜆 + 𝜇𝜇)(𝐴𝐴 + 𝐵𝐵) 

 =  (𝜆𝜆 + 𝜇𝜇)�𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖 � 
 =  �(𝜆𝜆 + 𝜇𝜇)(𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖 )� 

 
Sum of the ith row elements of 

𝐶𝐶 =   �𝑠𝑠𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

 

     =  ��(𝜆𝜆 + 𝜇𝜇) (𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖 ) �
𝑛𝑛2

𝑖𝑖=1

 

     =   (𝜆𝜆 +  𝜇𝜇)��[𝑎𝑎𝑖𝑖𝑖𝑖 ]
𝑛𝑛2

𝑖𝑖=1

 +   �[𝑠𝑠𝑖𝑖𝑖𝑖 ]
𝑛𝑛2

𝑖𝑖=1

� 

     =  (𝜆𝜆 + 𝜇𝜇)(𝑎𝑎 + 𝑠𝑠) 
     =  (𝜆𝜆 + 𝜇𝜇)(𝜌𝜌(𝐴𝐴) +  𝜌𝜌(𝐵𝐵)) 

 
A similar computation holds for column sum 
 
Main diagonal sum               

�𝑠𝑠𝑖𝑖𝑖𝑖  =  �[(𝜆𝜆 + 𝜇𝜇)(𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖) ]
𝑛𝑛2

𝑖𝑖=1

𝑛𝑛2

𝑖𝑖=1

 

               =  (𝜆𝜆 + 𝜇𝜇)��[𝑎𝑎𝑖𝑖𝑖𝑖 ]
𝑛𝑛2

𝑖𝑖=1

 +   �[𝑠𝑠𝑖𝑖𝑖𝑖 ]
𝑛𝑛2

𝑖𝑖=1

� 

               =  (𝜆𝜆 + 𝜇𝜇)(a + b) 
               =  (𝜆𝜆 + 𝜇𝜇)(𝜌𝜌(𝐴𝐴) + 𝜌𝜌(𝐵𝐵)) 

 
A similar computation holds for co - diagonal sum 
 
The sum of the 𝑛𝑛 × 𝑛𝑛 sub squares 𝑀𝑀𝑘𝑘𝐶𝐶

(𝑛𝑛) is given by 

��𝑠𝑠𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

=  ��[(𝜆𝜆 + 𝜇𝜇)(𝑎𝑎𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

+ 𝑠𝑠𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙)]
𝑛𝑛−1

𝑙𝑙=0

𝑛𝑛−1

𝑙𝑙=0

 

= (𝜆𝜆 + 𝜇𝜇) ���[𝑎𝑎𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

] + ��[𝑠𝑠𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛−1

𝑙𝑙=0

]
𝑛𝑛−1

𝑙𝑙=0

� 

= (𝜆𝜆 + 𝜇𝜇)(𝑎𝑎 + 𝑠𝑠) 
= (𝜆𝜆 + 𝜇𝜇)(𝜌𝜌(𝐴𝐴) +  𝜌𝜌(𝐵𝐵)) 

 
From the above propositions the following results can be obtained. 
 
Results: If for every 𝜆𝜆, 𝜇𝜇 𝜖𝜖 𝑅𝑅 𝑎𝑎𝑛𝑛𝑚𝑚 𝐴𝐴,𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠 , 
 
1.1)     𝜆𝜆 (𝐴𝐴 + 𝐵𝐵) ∈ 𝑆𝑆𝑀𝑀𝑠𝑠𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝜌𝜌 (𝜆𝜆 (𝐴𝐴 + 𝐵𝐵)) = 𝜆𝜆 (𝜌𝜌(𝐴𝐴) +  𝜌𝜌(𝐵𝐵)) 
 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷: In the above proposition1 put 𝜇𝜇 = 0 
 
1.2)     (𝐴𝐴 + 𝐵𝐵) ∈ 𝑆𝑆𝑀𝑀𝑠𝑠𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝜌𝜌 ( (𝐴𝐴 + 𝐵𝐵)) =  (𝜌𝜌(𝐴𝐴) +  𝜌𝜌(𝐵𝐵)) 
 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷: By putting λ = 1 in result 1.1 this  can be obtained 
 
1.3)  𝜆𝜆𝐴𝐴 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝜌𝜌(𝜆𝜆𝐴𝐴) = 𝜆𝜆𝜌𝜌(𝐴𝐴) 
 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷: It can be easily verified by putting B = 0 in result 1.1 
 
1.4)    –𝐴𝐴 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠  𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝜌𝜌(−𝐴𝐴) =  −𝜌𝜌(𝐴𝐴) 
 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷:𝐵𝐵𝐵𝐵 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝐶𝐶 𝜆𝜆 = −1 in result 1.3, it can be obtained 
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Theorem 2: < 𝑆𝑆𝑀𝑀𝑠𝑠  , +> 𝜌𝜌𝜌𝜌𝜌𝜌 𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛 𝐶𝐶𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠. 
 
Proof: 

I. Closure property: 𝑖𝑖𝜌𝜌𝐴𝐴,𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠 , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝐴𝐴 + 𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠 .  (𝜌𝜌𝜌𝜌𝜌𝜌𝑚𝑚 𝑎𝑎𝑠𝑠𝜌𝜌𝑎𝑎𝑒𝑒 𝜌𝜌𝑒𝑒𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡 1.2) 
II. Associatively: 𝑖𝑖𝜌𝜌𝐴𝐴,𝐵𝐵 ,𝐶𝐶 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠  , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛𝐴𝐴 + (𝐵𝐵 + 𝐶𝐶) = (𝐴𝐴 + 𝐵𝐵) + 𝐶𝐶 ∈  𝑆𝑆𝑀𝑀𝑠𝑠  (Since matrix addition is 

associative.) 
III. Existence of Identity: There exists 0 matrix in 𝑆𝑆𝑀𝑀𝑠𝑠  𝑠𝑠𝜌𝜌 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝐴𝐴 + 0 = 0 + 𝐴𝐴 = 𝐴𝐴,  

𝑤𝑤ℎ𝑒𝑒𝜌𝜌𝑒𝑒 0 𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 𝑎𝑎𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝐵𝐵 𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡. 
IV. Existence of  additive inverse: For every 𝐴𝐴 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠 , 𝑡𝑡ℎ𝑒𝑒𝜌𝜌𝑒𝑒 𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠 − 𝐴𝐴 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠  𝑠𝑠𝜌𝜌 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝐴𝐴 + (−𝐴𝐴) = 0  

𝑤𝑤ℎ𝑒𝑒𝜌𝜌𝑒𝑒  0 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠  (𝜌𝜌𝜌𝜌𝜌𝜌𝑚𝑚𝜌𝜌𝑒𝑒𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡 1.4). 
V. Commutatively: 𝐼𝐼𝜌𝜌𝐴𝐴,𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠 , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝐴𝐴 + 𝐵𝐵 = 𝐵𝐵 + 𝐴𝐴 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠  (Since matrix addition is commutative.) 

 
Theorem 3: < 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎), +> 𝜌𝜌𝜌𝜌𝜌𝜌𝑚𝑚𝑠𝑠 𝑎𝑎𝑛𝑛 𝑎𝑎𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛 𝐶𝐶𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠 
 
Proof: First we will prove that 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎)𝑖𝑖𝑠𝑠 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠 𝜌𝜌𝜌𝜌 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑠𝑠𝑒𝑒𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛 𝐶𝐶𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠 𝑆𝑆𝑀𝑀𝑠𝑠 . 
 
It is clear that 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) ⊂ 𝑆𝑆𝑀𝑀𝑠𝑠. 
 
𝐹𝐹𝜌𝜌𝜌𝜌𝐴𝐴,𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎);𝐴𝐴 =  [𝑎𝑎] 𝑎𝑎𝑛𝑛𝑚𝑚 𝐵𝐵 =  [𝑠𝑠], 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑠𝑠𝑙𝑙𝑒𝑒𝑎𝑎𝜌𝜌𝑙𝑙𝐵𝐵 𝐴𝐴 − 𝐵𝐵 =  [𝑎𝑎 − 𝑠𝑠] ∈ 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) 
 
Proposition 4: 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) is closed under matrix multiplication. 
 
Proof: Let  𝐴𝐴𝐵𝐵 = 𝐷𝐷 =  �𝑚𝑚𝑖𝑖𝑖𝑖 �𝜌𝜌𝜌𝜌𝜌𝜌𝐴𝐴 =  [𝑎𝑎]  𝑎𝑎𝑛𝑛𝑚𝑚 𝐵𝐵 =  [𝑠𝑠] ∈ 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎), 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑚𝑚𝑖𝑖𝑖𝑖 =  ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑛𝑛2

𝑘𝑘=1  . 𝑠𝑠𝑘𝑘𝑖𝑖 . =  𝑛𝑛2𝑎𝑎𝑠𝑠. 
 
Sum of the i th row elements of 𝐷𝐷 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛2

𝑖𝑖=1 =  ∑ 𝑛𝑛2𝑎𝑎𝑠𝑠 = 𝑛𝑛2
𝑖𝑖=1 𝑛𝑛4𝑎𝑎𝑠𝑠 

 
Sum of the j th column elements of 𝐷𝐷 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖 =  ∑ 𝑛𝑛2𝑎𝑎𝑠𝑠 = 𝑛𝑛2

𝑖𝑖=1
𝑛𝑛2
𝑖𝑖=1 𝑛𝑛4𝑎𝑎𝑠𝑠 

 
Sum of the diagonal elements of 𝐷𝐷 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖 =  ∑ 𝑛𝑛2𝑎𝑎𝑠𝑠𝑛𝑛2

𝑖𝑖=1
𝑛𝑛2
𝑖𝑖=1 =  𝑛𝑛4𝑎𝑎𝑠𝑠 

 
Sum of the co-diagonal elements of 𝐷𝐷 = ∑ 𝑚𝑚𝑖𝑖 ,𝑛𝑛2−𝑖𝑖+1 =  ∑ 𝑛𝑛2𝑎𝑎𝑠𝑠𝑛𝑛2

𝑖𝑖=1
𝑛𝑛2
𝑖𝑖=1 =  𝑛𝑛4𝑎𝑎𝑠𝑠 

 
Sum of the 𝑛𝑛 ×  𝑛𝑛  sub squares of 𝐷𝐷, 𝑀𝑀0𝐶𝐶

(𝑛𝑛)𝜌𝜌𝜌𝜌𝑀𝑀0𝑅𝑅
(𝑛𝑛)𝑖𝑖𝑠𝑠 

��𝑚𝑚𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

=  ��[(𝑎𝑎𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

. 𝑠𝑠𝑖𝑖+𝑘𝑘 ,𝑖𝑖+𝑙𝑙)]
𝑛𝑛−1

𝑙𝑙=0

𝑛𝑛−1

𝑙𝑙=0

 

=  ��𝑛𝑛2𝑎𝑎𝑠𝑠
𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛−1

𝑙𝑙=0

=  𝑛𝑛4𝑎𝑎𝑠𝑠. 

 
Thus 𝐷𝐷 = 𝐴𝐴𝐵𝐵𝜖𝜖𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎). 
 
Theorem 5: < 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) , +, . > 𝑤𝑤𝑖𝑖𝑙𝑙𝑙𝑙 𝜌𝜌𝜌𝜌𝜌𝜌𝑚𝑚 𝑎𝑎 𝜌𝜌𝑖𝑖𝑛𝑛𝐶𝐶 
 
Proof: Since 

a) 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) is an abelian group under matrix addition (By Theorem 3) 
b) Matrix multiplication is associative and distributive over addition. 
c) 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) is closed under matrix multiplication. (By Proposition 4) 

 
Proposition 6: Let 𝐴𝐴 =  [𝑎𝑎], 𝐵𝐵 = [𝑠𝑠] ∈ 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎), 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝐴𝐴.𝐵𝐵 = 𝐵𝐵.𝐴𝐴  
 
Proof: Since  𝐴𝐴,𝐵𝐵 ∈  𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎), 𝐴𝐴.𝐵𝐵 =  [𝑛𝑛2𝑎𝑎𝑠𝑠] = [𝑛𝑛2𝑠𝑠𝑎𝑎] = 𝐵𝐵.𝐴𝐴 
 
Theorem 7: < 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) , +, . > 𝑖𝑖𝑠𝑠 𝑎𝑎 𝑠𝑠𝜌𝜌𝑚𝑚𝑚𝑚𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑒𝑒 𝜌𝜌𝑖𝑖𝑛𝑛𝐶𝐶 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑠𝑠𝑛𝑛𝑖𝑖𝑡𝑡𝐵𝐵 𝐼𝐼𝑆𝑆 =  � 1

𝑛𝑛2� 
 
Proof: By Theorem 5 and Proposition 6 < 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎), +, . > 𝑖𝑖𝑠𝑠 𝑎𝑎 𝑠𝑠𝜌𝜌𝑚𝑚𝑚𝑚𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑒𝑒 𝜌𝜌𝑖𝑖𝑛𝑛g 
 
To prove that 𝐼𝐼𝑆𝑆 =  � 1

𝑛𝑛2� is the unity it is enough to prove that 𝐴𝐴 . 𝐼𝐼𝑆𝑆 = 𝐴𝐴 = 𝐼𝐼𝑆𝑆 .𝐴𝐴;𝜌𝜌𝜌𝜌𝜌𝜌 𝐴𝐴 ∈  𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎). 
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Clearly 𝐼𝐼𝑆𝑆 =  � 1

𝑛𝑛2� ∈  𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎).  
 
Now 𝐴𝐴 . 𝐼𝐼𝑆𝑆 =  [𝑎𝑎]. � 1

𝑛𝑛2� =  �𝑛𝑛2. 𝑎𝑎
𝑛𝑛2� =  [𝑎𝑎] =  𝐼𝐼𝑆𝑆 .𝐴𝐴  

 
Proposition 8: Let 𝐴𝐴,𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑠𝑠 , then 𝐴𝐴.𝐵𝐵 𝑚𝑚𝜌𝜌𝑒𝑒𝑠𝑠 𝑛𝑛𝜌𝜌𝑡𝑡 𝑠𝑠𝑒𝑒𝑙𝑙𝜌𝜌𝑛𝑛𝐶𝐶𝑠𝑠 𝑡𝑡𝜌𝜌 𝑆𝑆𝑀𝑀𝑠𝑠 . 
 
Proof: It can be verified by giving a suitable example. 

Let     𝐴𝐴 =  �
16 5 4 9
2 11 14 7

13
3

8
10

1 12
15 6

� and 𝐵𝐵 =   �

3 13 2 16
10 8 11 5
15
6

1
12

14 4
7 9

� then 

 𝐴𝐴𝐵𝐵 =  �
212 360 206 378
368 212 370 206
206
370

378
206

212 360
368 212

� and 𝐵𝐵𝐴𝐴 =  �
116 356 450 234
324 231 315 286
277
332

288
243

332 259
303 278

� 

 
which is not a Strongly Magic Square. 
 
This will lead to the following theorem. 
 
Theorem 9: < 𝑆𝑆𝑀𝑀𝑆𝑆 , +, . > will not form a ring 
 
Proof: The above proposition 8 shows that matrix multiplication of strongly magic squares is not closed. 
 
Therefore  𝑆𝑆𝑀𝑀𝑆𝑆   will not form a ring. 
 
Proposition 10: If  𝐴𝐴 ∈  𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎), then 𝐴𝐴 has a multiplicative inverse in 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎).  (Here 𝐴𝐴 ≠ 0) 
 
Proof: Let 𝐴𝐴 ∈  𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎), 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝐴𝐴 =  [𝑎𝑎].  Now we have to find out an element 𝐵𝐵 ∈  𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) such that 𝐴𝐴.𝐵𝐵 = 𝐼𝐼𝑆𝑆 ,
𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝐵𝐵 𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 𝜌𝜌𝜌𝜌 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) 
 
Take 𝐵𝐵 =  � 1

𝑛𝑛4𝑎𝑎
� then clearly 𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) 𝑎𝑎𝑛𝑛𝑚𝑚  𝐴𝐴.𝐵𝐵 =  [𝑎𝑎]. � 1

𝑛𝑛4𝑎𝑎
� = � 1

𝑛𝑛4𝑎𝑎
� . [𝑎𝑎] = 𝐵𝐵.𝐴𝐴 =  � 1

𝑛𝑛2� = 𝐼𝐼𝑆𝑆 . 
 
Theorem 11: < 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) , +, . >will form a field. 
 
Proof: Since < 𝑆𝑆𝑀𝑀𝑆𝑆(𝑎𝑎) , +, . >forms a commutative ring with unity (Theorem 7) and it has amultiplicative inverse 
(Proposition 10), it will form a field. 
 
IV. CONCLUSION 
 
While magic squares are recreational in grade school, they may be treated somewhat more seriously in different algebra 
courses. The study of strongly magic squares is an emerging innovative area in which mathematical analysis can be 
done. Here some advanced properties regarding strongly magic squares are described. 
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