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ABSTRACT

In this paper, we have studied various properties of the F-sturcture satisfying F® + F* + F2 = 0. Nijenhuis tensor,

metric F-structure and kernel have also been discussed.
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1. INTRODUCTION

Let M" be a C* differentiable manifold and F be a C” (1, 1) tensor defined on M" by
L) F°+F*+F?=0

We define the operators | and m by

@2 1=F°% m=1-F°
From (1.1) and (1.2), we have
@3 I+m=1, I’=1, m*=m, In=ml =0
FA=IF*=F% F’m=mF?=0.
Let
(L4) M ={m-F°,m-F*..m-F,m+F,m+F’,..m+F*| and

(1.5) L:{I CFSI—F5 . I-FI+FI+F%... 1+ FG}

We study properties of some elements of M and L.

Theorem 1.1: We define the (1, 1) tensors by
16) p=m+F° q=m-F?,
wna=1+F pg=1-F°
(18) y=1+F? 5=1-F?

Then we have
19 pg=m-1,p*=q°=1,p°-p-q+1=2l
(110) " =2""a, " =2""
(111) 3 +6° =0
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Proof: We prove only (1.11)

Using (1.1), (1.2), (1.3) and (1.8)
(112) #° :(I + Fz)(l + FZ)
=1 +IF* +F1 +F*
=1+F?*+F?+F*
=F°+F*+F?+F?, Thus

(1.13) y* = F?
and

(114 5 =(1-F?)(1-F?)
12 -IF2—F4+F*
—|-F?-F*+F*
=F°+F'+F?-3F°
(1.15) §2 =—3F?,
From (1.13) and (1.15) we get (1.11)
2. NIJENHUIS TENSOR
The Nijenhuis tensor corresponding to F, | and m be denoted by N, N, N respectively and defined by
F I m
— 2 _ _
@) N(X,Y)=[FX,FY]+F*[X,Y]-F[FX.Y]-F[X,FY]
— 2 _ _
@2 N(X,Y)=[IX Y]+ [ X Y] 1Y = 1[I ]
(2.3) N(X,Y)=[mX,mY ]+ m?[X,Y]-m[mX,Y]-m[X,mY]
Theorem 2.1: For the structure F satisfying (1.1), we have
24 N(mX,mY)=F*[mX,mY]
F
2 _
2.5) F D!(mX,mY)_I[mX,mY]
26) N(mX,mY)=1[mX,mY ]
@7) N(IX,1Y)=m[IX,1Y]
(2.8) N(IX,mY):N[mX,IY]:O

m

Proof: Using (1.2) and (1.3) in (2.1), (2.2), (2.3) we get the results.
3. METRIC F-STRUCTURE

Let the Riemannian metric g is such that
(31) F ( X ,Y) =g ( FX,Y ) is symmetric then

32) g(FX,Y)=-g(X,FY)
(33) m(X,Y)=g(mX,Y)=g(X,mY)

Theorem 3.1: For the F-structure satisfying (1.1), we have

@4 g (F°X,FY)=g(X,Y)-m(X.Y)
Proof: Using (1.2), (1.3) (3.2) and (3.3) we get the results.
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Definition 3.1: Let us define

(35) Ker F =(X :FX =0)

Theorem 3.2: For the F-structure satisfying (1.1) we have
(3.6) Ker F* =Ker F*=Ker F°

Proof: From (1.1), we have F® = F2 F** =F* FY? =F°
Let X eKer F>= F*X =0

= F'X =0

= F*X =0

— X eKer F*
Thus

(3.7) Ker F? — Ker F*

Now let
X eKer F*=F*X =0
=F’X =0
= F?’X =0
= X e Ker F?
Thus

(3.8) Ker F* — Ker F?

From (3.7) and (3.8), we get
(3.9) Ker F? =Ker F*,

Proceeding similarly we get Ker F* = Ker F°® and hence (3.6).
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