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ABSTRACT 
Chemical graph theory is a branch of graph theory whose focus of interest is to finding totological indices of chemical 
graphs, which correlate well with chemical properties of the chemical molecules. In this paper, we determine the F-
index, reformulated first Zagrab index and general reformulated Zagreb index of linear [n]- Tetracene, V-Tetracenic 
nanotube, H-Tetracenic nanotube and Tetracenic nanotori. 
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1. INTRODUCTION 
 
Let G be a finite, simple and connected graph with a vertex set V(G) and an edge set E(G). The degree dG(v) of a vertex 
v is the number of vertices adjacent to v. The degree of an edge e = uv in G is defined by dG(e) = dG(u) + dG(v) – 2. We 
refer to [1] for undefined term and notation. 
 
A molecular graph is a simple graph related to the structure of a chemical compound. Each vertex of this graph 
represents an atom of the molecule and its edges to the bonds between atoms. A topological index is a numerical 
parameter mathematically derived from the graph structure. These indices are useful for establishing correlation 
between the structure of a molecular compound and its physico-chemical properties. 
 
The first and second Zagreb indices of a graph G are defined as  
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These indices were introduced by Gutman et al. in [2]. 
 
Another vertex degree based topological index was defined in [2], where the Zagreb indices were proposed and that 
was shown to influence the total π-electron energy (ε). Recently it was studied by Furtula et al. in [3]. They named this 
index as forgotten topological index or F-index. This index is defined as  
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It is easy to see that 
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Miličević et al [5] reformulated the first Zagreb index in terms of edge-edge instead of vertex degree: 
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The use of these descriptors in QSPR study was discussed in their paper [5]. The reformulated Zagreb indices were 
studied for example in [6, 7]. Many other topological indices were studied, for example, in [8, 9, 10, 11, 12, 13, 14, 15 
16, 17, 18, 19, 20] 

 
The general reformulated Zagreb index of a graph G is defined as  
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where a is a real number. 
 
In this paper, we compute the F-index, general reformulated Zagreb index of certain nanostructures. 
 
2. RESULTS FOR LINEAR [n]-TETRACENE 

 
The molecular graph of a linear [n]-Tetracene is shown in Figure -1. 

 

1 2 i n
 

Figure-1: The molecular graph of a linear [n]-Tetracene 
 

We determine the exact values of F-index and general reformulated first Zagreb index of a linear [n]- Tetracane. 
 
Theorem 2.1: Let T be a linear [n]-Tetracene. Then  

(i) F(T) = 334 n –76                        (1) 
(ii) ( ) ( ) ( )1 6 2 3 4 .16 4 7 4a a a aEM n nT = × + × +− −         (2) 

 
Proof: Let T be the graph of a linear [n]-Tetracene. From Figure 1, one can easily check that V(T) = 18n and E(T) = 
23n –2. In T, there are three types of edges based on the degree of the vertices of each edge. Further, by algebraic 
method, the edge degree partition of a linear [n]-tetracene T is given in Table 1. 
 

dT(u), dT(v) \ e = uv ∈ E(T) E4 = (2,2) E5 = (3,2) E6 = (3,3) 
dT(e) 2 3 4 

Number of edges 6 16n –4 7n – 4 
Table-1: Edge degree partition of T. 

 
(i) Now to compute F(T), we see that  
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        = (22+22)×6 +(32+22)(16n – 4) +(32+32)(7n – 4) = 334n – 76. 
 

(ii) To compute ( )1 ,aEM T  we see that 
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An immediate corollary is the reformulated first Zagreb index of a linear [n]-Tetracene. 
 

Corollary 2.2: Let T be a linear [n]-Tetracene. Then 
  EM1(T) = 256n – 76. 
 
Proof: Put a = 2 in equation (2), we get the desired result. 
 
3. RESULTS FOR NANOSTRUCTURE F = F[p, q]  
 
The molecular graph of 2-D lattice with of F = F[p, q] with p = 2 and q = 4 is shown in Figure 2. 
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Figure-2: The graph of 2-D lattice of F = F[p, q] with p = 2 and q = 4 

 
We compute the F-index and general reformulated first Zagreb index of a nanostructure F = F[p, q]. 
 
Theorem 3.1: Let F = F[p, q] be a nanostructure. Then 

(i) F(F[p, q]) = 486 pq –152p – 76q.                                                             (3) 
(ii) [ ]( ) ( ) ( )1 2 74 4 2 8 3 4 4, 16 3 20 4 2 2 4 3 8 4

a a a a aa a a a aEM F pq p qp q = × + + + × − × + ×× − × × + × − ×
 (4) 

  
Proof: Let F = F [p, q] be a nanostructure as shown in Figure 2. By algebraic method, we have |V(F)| = 18p and 
|E(F)|=27pq –2q – 4p. Further, the edge degree partition of a nanostructure F is given in Table 2. 
 

dF(u), dF(v)\ e = uv ∈ E(F) E4 = (2,2) E5 = (3,2) E6 = (3,3) 
dF(e) 2 3 4 

Number of edges 2q + 4 16p+4q – 8 27pq – 20p – 8q + 4 
Table-2: Edge degree partition of F = F(p, q) 

 
(i) Now to determine F(F), we see that  
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 = 486pq – 152p – 76q. 

 
(ii) To determine EM1

a(F), we see that  
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An immediate corollary is the reformulated first Zagreb index of a nanostructure F. 
 
Corollary 3.2: Let F = F[p, q] be a nanostructure. Then 

EM1(F[p,q]) = 432pq – 176p – 84q + 8. 
 
Proof: Put a = 2 in equation (4), we get the desired result. 
 
4. RESULTS FOR NANOSTRUCTURE G = G [p, q]. 
 
The modular graph of 2-D lattice of G=G[p, q] with p = 2 and q = 4 is shown in Figure 3. 
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Figure-3: The graph of 2-D lattice of G = G [p, q] with p = 2 and q = 4 

 
We determine the F-index and general reformulated first Zagreb index of a nonstructure G = G[p, q]. 
 
Theorem 4.1: Let G = G [p, q] be a nanostructure. Then 

(i) F(G) = 486pq – 152p.          (5) 
(ii) EM1

a(G) = 27 × 4apq + (16 × 3a – 20 × 4a)p.                     (6) 
 
Proof: Let G = G[p, q] be a nanostructure as shown in Figure 3. By Algebraic method, we have |V(G) | = 18pq and  
E(G) = 27pq – 4q. In G, there are two types of edges based on the degree of the vertices of each edge. Further, by 
algebraic method, the edge degree partition of a nanostructure G is given in Table 3. 
 

dG(u), dG(v)\ e = uv ∈ E(G) E5 = (3, 2) E6 = (3, 3) 
dG(e) 3 4 

Number of edges 16p 27pq – 20p 
Table-3: Edge degree partition of G 

 
(i) Now to compute F(G),we see that 

F(G) ( ) ( )( )
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        = (32+22)16p + (32 + 32) (27pq – 20p) = 486pq – 152p. 
(ii) To compute EM1
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An immediate corollary is the reformulated first Zagreb index of a nanostructure G. 

 
Corollary 4.2: Let G = G[p, q] be a nanostructure. Then 

EM1(G) = 432 pq – 176 p 
 
Proof: Put a = 2 in equation (6), we get the desired result. 

 
5. RESULTS FOR NANOSTRUCTURE K = K [p, q]  
 
The molecular graph of 2-D lattice of K = K [p, q] with p = 2 and q = 3 is shown in Figure 4. 

 

 
Figure 4: The graph of 2-D lattice of K = K[p, q] with p = 2 and q = 3 
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In the following theorem, we compute the F-index and general reformulated first Zagreb index of a nanostructure        
K = K[p, q]. 

 
Theorem 5.1: Let K = K [p, q] be a nanostructure. Then 

(i) F(K[p, q]) = 486pq – 76q.                                                                     (7) 
(ii) EM1

a (K[p, q]) = 27 × 4a (pq) + (2 × 2a +4 × 3a – 8 × 4a)q.        (8) 
 
Proof: Let K = K[p, q] be a nanostructure as shown in Figure 4. By algebraic method, we have |V(K)| = 18pq and  
|E(K)| = 27pq – 2q. In K, there are three types of edges based on the degree of the vertices of each edge. Further, by 
algebraic method, the edge degree partition of a nanostructure K is given in Table 4. 
 

dK(u), dK(v) \ e = uv ∈ E(K) E4 = (2,2) E5 = (3,2) E6 = (3,3) 
dK(e) 2 3 4 

Number of edges 2q 4q 27pq – 8q 
Table-4: Edge degree partition of K. 

 
(i) Now to compute F(K), we see that 
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(ii) To compute EM1

a [K], we see that 
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An immediate corollary in the reformulated first Zagreb index of a nanostructure K. 
 
Corollary 5.2: Let K = K[p, q] be a nanostructure. Then 

EM1(K) = 432 pq – 84 q. 
 
Proof: Put a = 2 in equation (8), we get the desired result. 
 
6. RESULTS FOR NANOSTRUCTURE L = L [p, q] 
 
The molecular graph of 2-D lattice of L = L[p, q] with p = 2 and q = 4 is shown in Figure 5. 
 

 
Figure-5: The graph of 2-D lattice of L = L[p, q] with p = 2 and q = 4. 

 
In the following theorem, we compute the F-index and general reformulated first Zagreb index of a nanostructure          
L = L[p, q]. 
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Theorem 6: Let L = [p, q] be a nanostructure. Then 

(i) F (L[p, q]) = 486pq.                       (9) 
(ii) EM1

a(L[p, q]) = 4a × 27pq.                                  (10) 
 
Proof: Let L = L[p, q] be a nanostructure as shown in Figure 5. By algebraic method, we have |V(L)| = 18pq and  
|E(L)|= 27 pq. Further the edge degree partition of the nanostructure L = L[p, q] is given in Table 5. 
 

dL(u), dL(v) \ e  = uv  ∈ E(L) E6 = (3,3) 
dL(e) 4 

Number of edges 27pq 
Table-5: Edge partition of L. 

 
(i) Now to compute F(L), we see that 

( ) ( ) ( )( ) ( )
6
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uv E

F pq pqd dL u v  

(ii) To compute EM1
a(L), we see that 
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6
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L

uv E
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An immediate corollary is the reformulated first Zagrab index of a nanostructure L. 

 
Corollary 6.2: Let L=L[p, q] be a nanostructure Then EM1(L) = 432pq. 
 
Proof: Put a = 2 in equation (10), we get the desired result. 
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