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ABSTRACT 
This article is concerned with the longtime behavior for the nonclassical parabolic equation  
                                        1 2( ) ( ) ( ) ( )t tt u t u u u g xε ε ϕ− ∆ −∆ + = ,                                                                            (*) 

on a bounded  domain ( 3)N NΩ⊂ ≥ . We first obtain the existence and characterization of time-dependent global 

attractors { }t tA ∈=


A in the time-dependent space tΞ  while the nonlinearity ϕ  satisfying critical exponent growth, 

and then, we prove the optimal regularity of the time-dependent global attractor { }t tA ∈=


A , i.e., tA  is bounded in 
1
tΞ , with a bound independent of t . 

 
Key words: Nonclassical parabolic equations; time-dependent global attractor; time-dependent absorbing set; critical 
exponent; regularity. 
 
Classification: AMS (2000) 35B41; 35Q35. 
 
 
1. INTRODUCTION 
 
The study of the global attractor in autonomous problems has been developed extensively over the last few decades and 
has become a classical theory with nice works, see, for instance, [3, 4-6, 8, 12-15, 17-19, 21] and the references therein. 
The global attractor is a natural mathematical object that describes the stationary state of the system and all the possible 
dynamics, giving crucial information on the long time behavior. In 2013,  M. Conti, V.Pata and R. Temam exploit a 
new framework to introduce the time-dependent global attractor in time-dependent spaces in [7], and it is a  good 
mathematical object to study the longtime dynamics of PDEs with time-dependent coefficient, see, e.g., [7, 10, 11] and 
the references therein. 
 
Let us consider the following time-dependent coefficient nonclassical parabolic equation 

( ) ( )

1 2( ) ( ) ( ) ( ), [ , ), ,
0, ,
, , ,

t tt u t u u u g x in
u on
u x x x

ε ε ϕ τ τ

τ φ

− ∆ −∆ + = Ω× ∞ ∈
 = ∂Ω
 = ∈Ω



                                                        (1.1) 

where ( 3)N NΩ⊂ ≥ be a bounded domain with smooth boundary ∂Ω ,  :φ Ω→ is assigned data, ( )i tε  be a 
positive decreasing bounded function satisfying 

lim ( ) 0it
tε

→+∞
= , ( ) 0i tε ′ < , 1, 2,i =                                                                                                               (1.2) 

and there exist positive constants iρ  and i  such that 

( ) , 1, 2.ρ ε≤ ≤ =i i it i                                                                                                                                 (1.3)  
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The nonlinearity ( )ϕ∈  with (0) 0ϕ = , and  satisfies 

2 21 1
2 2( ) ( ) (1 )

N N
N Nu v u v u vϕ ϕ κ
+ +

− −
− −− ≤ − + + ,for some 0κ ≥ ,                                                         (1.4) 

along with the dissipation condition 

1
( )lim inf

u

u
u

ϕ λ
→∞

> − ,                                                                                                                                    (1.5) 

where 1λ is the first eigenvalue of −∆  in 1
0 ( )H Ω , and 2( ) ( )g x L∈ Ω . 

 
The classical reaction diffusion equation has strong background in mathematical physics, and it is very natural in many 
mathematical models. This problem arises in hydrodynamics and the heat transfer theory, such as heat transfer in a 
solid in contact with a moving fluid, thermoelastic distortion, diffusion phenomena, heat transfer in two media, 
problems in fluid dynamics etc. e.g. see [1, 2, 6, 12, 18]. In 1980, E. C. Aifantis in [1] pointed out that the classical 
reaction-diffusion equation does not contain each aspect of the reaction-diffusion problem, and it neglects viscidity, 
elasticity and pressure of medium in the process of solid diffusion and so on. In the sequel, Aifantis found out that the 
energy constitutional equation revealing the diffusion process is different along with the different property of the 
diffusion solid. Therefore, he constructed the mathematic model by some concrete examples, which contains viscidity, 
elasticity and pressure of medium that is the nonclassical parabolic equation. Here 1( )tε  is the density of the fluid, and 

tu−∆ denote the pressure, viscoelasticity and memory, e.g. see [1, 2, 24]. 
 
In the case when 1 2( ) ( ) 1t tε ε= =  is a positiveconstant, the asymptotic behavior of solutions to Eq.(1.1) has been 

extensively studied by several authors in [16, 20, 22-25] and references therein. When 1( )tε and 2 ( )tε  depending on 
time, to our best knowledge, the longtime behavior for the nonclassical equation have not been considered by 
predecessors. In this article, we borrow some ideas from many literatures: F. Flandoli and B. Schmalfuss in [11] who 
introduced a family of metric spaces depending on a parameter and applied to the stochastic Navier-Stokes equations 
with multiplicative white noise; T. Caraballo concerned a one-parameter family of Banach spaces in the context of 
cocycles for non-autonomous and random dynamical systems in [5] and time-dependent spaces [4] in the context of 
stochastic partial differential equations; M. Conti, V. Pata and R. Temam in [8] introduced the theory of time-
dependent global attractors and apply the theory to the wave equations. In this paper, we apply the abstract theory to a 
new model Equ.(1.1) to  prove the existence of time-dependent global attractors. 
 
Since Equation (1.1) contains the term tu−∆ , it is different from the usual reaction-diffusion equation essentially. For 
example, the reaction diffusion equation has some smoothing effect, e.g., although the initial data only belongs to a 
weaker topology space, the solution will belong to a stronger topology space with higher regularity. However, for 
Equation (1.1), if the initial data uτ  belongs to tΞ , then the solution ( , )u t x with uτ  is always in tΞ and has no 

higher regularity because of tu−∆ . In this paper, we apply the techniques introduced in [8] to overcome some 
difficulties, and then establish the asymptotic regularity of solutions. 
 
This paper is organized as following: In Section 1, we have expounded on research progress as regards our research 
problem, and given some assumptions. In Section 2, we introduce some notations and functions spaces, and we give 
some useful lemmas. In Section 3, we prove the existence and characterization of time-dependent global attractor for 
the nonclassical parabolic equation, and the regularity of time-dependent global attractor is stated and proved in Section 4. 
 
Our main results are Theorem 3.1 and Theorem 4.1. 
 
2. PRELIMINARIES 
 
The following notation will be used throughout this paper: 2 ( )H L= Ω , with inner product ,〈⋅ ⋅〉  and norm ⋅ . For 

0 2σ≤ ≤ , we define the hierarchy of (compactly) nested Hilbert spaces 

2( )H D A
σ

σ = , 2 2, ,v A A v
σ σ

σω ω〈 〉 = 〈 〉 , 2
σ

σ
ω ω= A  . 

Then, for t∈ and 0 2σ≤ ≤ , we introduce the time-dependent spaces 1t Hσ
σ +Ξ = endowed with the time-

dependent product norms 
2 2 2

1 2 1
( ) ( )

t
u t u t uσ σ σ

ε ε
Ξ +
= + . 
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The symbol sigma $ is always omitted whenever zero, In particular, the time-depended phase space where we settle the 
problem is 

1t HΞ =  with 
2 2 2

1 2 1
( ) ( )

t
u t u t uε ε

Ξ
= +      

Then, we have the compact embeddings 

t t
σΞ ⊂ Ξ , 0 2σ≤ ≤  

with injection constants independent of t∈ . 

Note that the spaces tΞ  are all the same as linear spaces, and the norm 
2

t
z

Ξ
 and 

2

tΞ
⋅  are equivalent for any fixed t ,

τ ∈ .Now, we iterate some definitions and abstract results concerning the time-dependent global attractor, which is 
necessary to obtain our main results, please refer the reader to see [7, 9]for more details. 
 
Definition 2.1: A time-dependent absorbing set for the process ( , )U t τ  is a uniformly bounded family { }t t

B
∈

=


  

with the following property: for every 0R ≥  there exists ( ) 0e e Rθ θ= ≥  such that  

ττ θ τ ( , ) ( )
e t

t U t R B    . 

For t  , let 
t

X  be a family of normed spaces, we consider the collection  



 { { } } : , }
t t t t

K K X compact pullback attracting        . 

When φ  we say that the process is asymptotically compact. 
 
Definition 2.2: We call a time-dependent global attractor the smallest element of  , i.e. the family 



A { }
t t

A  

such that ,
t t

A K t  ,for any element  


{ }
t t

K    . 

 
Definition 2.3: If τ( , )U t is asymptotically compact, then the time-dependent attractor A  exists and coincides with 

the set


A { }
t t

A  . In particular, it is unique. 
 
Definition 2.4: If τ( , )U t is a T -closed process for some T > 0 , which possesses a time-dependent global attractor 
A , then A  is invariant. 
 
Remark 2.1: If the process τ( , )U t  is closed it is T -closed, for any T > 0 . Note that if the process τ( , )U t  is a 
continuous (or even norm-to-weak continuous) map for all τt  , then the process is closed. 
 
Definition 2.5: A function Ξ: ( )

t
z t z t   is a complete bounded trajectory (CBT) of τ( , )U t  if and only if 

Ξ


sup ( )
t

t
z t


   

and 

ττ τ τ ( ) ( , ) , ,z t U t z t    . 
 
Definition 2.6: Let  



A { }
t t

A   be then the time-dependent attractor of τ( , )U t . If A  is invariant, then 

τΞ{ ( ) : ( , )}
t t

A z t z CBT of U t          . 
Accordingly, we can write 

τΞA { : ( ) ( , )}
t

z t z t with z CBT of U t            . 
 

3. EXISTENCE AND CHARACTERIZATION OF THE TIME-DEPENDENT GLOBAL ATTRACTOR 
 

3.1 Well-posedness 
For anyτ   , we rewrite problem (1.1) as 

ε ε ϕ τ
τ φ

( ) ( ) ( ) ( ), ,

( , )
t t

t u t Au Au u g x t

u x

     




     
                                                                        （3.1） 
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Applying the Galerkin approximation scheme, we can obtain the following result concerning the existence and 
uniqueness of solutions easily, see e.g. [14, 16, 23, 24]. 
 
Lemma 3.1: Under the assumptions of (1.2)-(1.5), for any τφ Ξ , there is a unique solution u  of (3.1) satisfy, on 

any interval [ , ]tτ  witht τ , 

([ , ]; )u tτ Ξ  . 

Furthermore, for 1, 2=i , let τ τ∈Ξiu be two initial conditions such that
τ

τ Ξ
≤iu R , and denote by iu  the 

corresponding solutions to problem (3.1). Then estimates hold as follows: 
22 ( ) 1 2

1 2( ) ( ) ,τ
τ τ τ−

Ξ Ξ
− ≤ − ≥

t t

tu t u t e u u t  ,                                                                                          (3.2) 

for some constant ( ) 0= ≥R  . 
 
Based on Lemma 3.1 above, we can define a family of maps with t τ    

( , ) : ττ Ξ →ΞtU t , 
acting as 

( ) ( , )τ ττ→ =u u t U t u  

where u  is the unique solution to (3.1) with initial timeτ and initial condition τ τ∈Ξu , defines a strongly continuous 

process on the family{ }∈Ξ
t t . 

 
3.2 Time-dependent absorbing set 
 
Lemma 3.2: Under the assumptions of (1.2)-(1.5). For τ τ∈Ξu , t τ , let ( , ) ττU t u be the solution of (3.1), then, 

there exist positive constants  , , , gC    and an increasing positive function  such that 

              , ,( , ) ( ) ,
t gU t u u e C t

τ

τ
τ ττ τ−

Ξ Ξ
≤ + ≥     .                                                               (3.3) 

 
Proof: Multiplying (3.1) by u , we obtain 

1 1 1
2 2 2

2 2 22 21 2
1 2

1 ( ( ) ( ) ) ( ), ( ),
2 2 2

ε εε ε ϕ
′ ′

+ + + 〈 〉 = 〈 〉 + +
d t u t A u A u u u g u u u A u
dt

.               (3.4) 

 
According to (1.5), the following inequalities hold for some 0 1ν< < , 

1
2

2
( ), (1 )ϕ ν〈 〉 ≥ − − −u u A u C .                                                                                                               (3.5) 

 
Using (2.3) and Young and Poincaré inequalities, for some positive constants 

1 2 1, , ,ν ρ ρ λ=  small enough, and noting 

that 0( 1,2)ε ′ < =i i , we get 

   
1 1
2 2

1 2

2 22 2
1 2 1 2 ,( ( ) ( ) ) ( ( ) ( ) ) g

d t u t A u t u t A u C
dt ρ ρε ε ε ε+ + + <     .                                       (3.6) 

 
By the Gronwall lemma, we infer 

1 2

2 2
, , ,( ) ( )

t t

t
gu t Ce u Cτ

ρ ρτ−
Ξ Ξ
≤ + 

  
 .                                                                                                 (3.7) 

This completes the proof. 
 
Lemma 3.3: (Time-dependent absorbing set) Under the assumptions of (1.2)-(1.5), there exists  a constant 1 0R > , 

such that the family 1{ ( )}t tR ∈=


B  is a time-dependent absorbing set for ( , )U t τ . 
 
Indeed, according to the proof of Lemma 3, 2, for ( )u Rτ∈ , there exists 0eθ ≥ , provided that et τ θ− ≥ , 

0( , )
t

U t u Rττ
Ξ
≤ .                                                                                                                                       (3.8) 
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This concludes the existence of the time-dependent absorbing set. 
 
We can assume that the time-dependent absorbing set 1( )t t R= B  is positively invariant (namely ( , ) tU t B Bττ ⊂  

for all t τ ). In fact, calling eθ  the entering time of tB  such that  

( , ) ,t eU t B B tττ τ θ⊂ ≤ − . 
 
we can substitute tB  with the invariant absorbing family  

( , )
e

t
t

U t B Bτ
τ θ

τ
≤ −

⊂


. 

 
3.3. Time-dependent global attractor 
 
Based on Definition 2.2, the existence of the time-dependent global attractor can be obtained by a direct application of 
the abstract Theorem 2.3. Precisely, in order to show that the process is asymptotically compact, we shall exhibit a 
pullback attracting family of compact sets. To this aim, the strategy classically consists in finding a suitable 
decomposition of the process in the sum of a decaying part and of a compact one. 
 
3.4. The first decomposition of the system equations 
 
For the nonlinearityϕ , following [7, 8], we can decompose ϕ as follows: 

0 1ϕ ϕ ϕ= + , 

where 0ϕ , 1 ( )ϕ ∈  satisfy, for some 0c ≥ , 
2 21 1
2 2

0 0( ) ( ) 1 , ,
N N
N Nu v u v u v u vϕ ϕ κ
+ +

− −
− −

 − ≤ − + + ∈ 
 

   ,                                                         (3.9) 

0 ( ) 0,u u uϕ ≥ ∈  ,                                                                                                                              (3.10) 

1
1

( )lim inf
u

u
u

ϕ λ
→∞

> − ,                                                                                                                                 (3.11) 

1( ) (1 ),u c u uϕ ≤ + ∈  ,                                                                                                                  (3.12) 
 
Noting that 1{ ( )}t tR ∈=



B  is a time-dependent absorbing set for ( , ) ττU t u , then for each initial data 

1( )tu Rτ ∈ , we decompose ( , )U t τ as 

( , ) ( , ) ( , )gU t u T t u S t uτ τ ττ τ τ= + . 

where ( , )v T t uττ= and ( , )gS t uτω τ= solves the following equations respectively: 

1 2 0( ) ( ) ( ) 0,
( , ) ,

t tt v t Av Av v
T uτ

ε ε ϕ
τ τ

+ + + =
 =

                                                                                                   (3.13) 

and 

1 2 0( ) ( ) ( ) ( ) ,
( , ) 0,

t t

g

t t A A u v g
S
ε ω ε ω ω ϕ ϕ

τ τ
+ + + − =

 =
                                                                                  (3.14) 

 
Lemma 3.4: Under the assumptions of (1.2)-(1.5), (3.9)-(3.12), there exists = B     such that 

( )
3( . ) ,

t

tT t u C e tτ
ττ τ−

Ξ
≤ ≥  .                                                                                                         (3.15) 

 
Proof: Multiplying (3.13) by υ  and integrating over Ω , we infer 

1 1 1
2 2 2

2 2 22 21 2
1 2 0

1 ( ( ) ( ) ) ( ),
2 2 2

d t v t A v A v v v v A v
dt

ε εε ε ϕ
′ ′

+ + + 〈 〉 = + .                                  (3.16) 
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Note that 0( 1,2)i iε ′ < = , and using (1.3) and (3.10), by Young and Poincaré inequalities, for 0>  small, we infer 

1 1
2 2

2 22 2
1 2 1 2( ( ) ( ) ) ( ( ) ( ) ) 0d t v t A v t v t A v

dt
ε ε ε ε+ + + ≤ .                                                       (3.17) 

 
By the Gronwall lemma, we complete the proof. 
 
Remark 3.5: From Lemma 3.2 and Lemma 3.4, we have the uniform bound 

su p[ ( , ) ( , ) ( , ) ]
t t t

g
t

U t T t S t C
τ

τ τ τ
Ξ Ξ Ξ≥
+ + ≤ . 

 
Lemma 3.6: Under the assumptions of (1.2)-(1.5), (3.9)-(3.12), for every 0T > , there exists ( ) 0M M= >B  such 
that 

1
3

sup ( , )
t

g
t

S T u Mτ
τ

τ
Ξ≥
≤ .                                                                                                                          (3.18) 

 

Proof: Multiplying (3.14) by 
1
3A ω  and integrating over Ω , we obtain 

1 2 2 1 2
6 3 3 6 3

1
3

1 1 1
3 3 3

2 2 2 2 2
1 2

1 2

0

1

1 ( ( ) ( ) )
2 2 2

( ) ( ) ,

( ) ( ), ( ), , .

d t A t A A A A
dt

u v A

u v A v A A

ε εε ω ε ω ω ω ω

ϕ ϕ ω

ϕ ϕ ω ϕ ω ω

′ ′
+ + − −

= −〈 − − 〉

= −〈 − 〉 − 〈 〉 + 〈 〉

   

g

g

                                     (3.19) 

 

By Remark 3.1 and (3.9)-(3.12), and noting that
2 3 8 3 4 1

6 6
N N

N N N
− −

+ + = , we infer 

4 41 1
2 23 3

4 4 1
2 2 36

62 2 3 8
3 42 2

4 4
21 12 2
32 2

2
3

2

2

( ) ( ), (1 )

(1 )

(1 )

,

N N

N N N
NN N N

NN N

N N

L LL L

u v A c u v A dx

c u v A

c A u A v A

c A

ϕ ϕ ω ω ω

ω ω

ω

ω

− −

− −
−

−− −

− −

Ω
〈 − 〉 ≤ + +

≤ + +

≤ + +

≤

∫
                       

                       

                       

                                                      (3.20) 

and 
1 1
3 3

2
3

1( ), (1 )

,

v A c v A dx

C A

ϕ ω ω

ω

Ω
〈 〉 ≤ +

≤

∫
                

                                                                                                     (3.21)  

And 
1 1
3 3, ,g A c g Aω ω〈 〉 ≤                                                                                                                            (3.22) 

where we have used the continuous embedding 
21

22
1 ( ) ( )

N
NH D A L −= Ω , 

61
3 3 4

2
3

( ) ( )
N

NH D A L −= Ω ,
62

3 3 8
4
3

( ) ( )
N

NH D A L −= Ω . 

 
By Young and Poincaré inequalities, for 0>  small, we infer 

1 2 1 2
6 3 6 3

2 2 2 2

1 2 1 2( ( ) ( ) ) ( ( ) ( ) )d t A t A C t A t A
dt

ε ω ε ω ε ω ε ω+ ≤ + .                                              (3.23) 

 
By use of the Gronwall lemma and noting that ( , ) 0gS τ τ = , we complete the proof. 
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Theorem 3.1: (Existence and characterization of the time-dependent global attractor) Under the assumptions of (1.2)-
(1.5), the process ( , ) : ττ Ξ →ΞtU t  generated by problem (1.1) admits an invariant time-dependent global attractor 

{ }t tA ∈=


A . 
 
Furthermore, we can write 

τΞA { : ( ) ( , )}
t

z t z t with z CBT of U t            . 
 
Proof: According to Lemma 3.6, we consider the family { }t tK ∈=



K  where  
1
3 1

3{ : }
t

t tK u u M
Ξ

= ∈Ξ ≤  

tK  is compact by the compact embedding
1
3
t tΞ ∈Ξ ; besides, since the injection constants are independent of t , K is 

uniformly bounded. Hence, according to Lemma 3.3, Lemma 3.4 and Lemma 3.6, K  is pullback attracting, and the 
process ( , )U t τ  is asymptotically compact, which proves the existence of the unique time-dependent global attractor. 
In order to state the invariance of the time-dependent global attractor, due to the strong continuity of the process 

( , )U t τ  stated in Lemma 3.1, according to Remark 2.1, the process ( , )U t τ  is closed, and it is T-closed, for some 
0T > , then by Theorem 2.4, we know that the time-dependent global attractor A  is invariant. By use of Theorem 

2.6, we know that the time-dependent global attractor can be characterized as sections of the set of complete bounded 
trajectories. 
 
This completes the proof. 
 
From Lemma 3.6 and Theorem 3.1, we immediately have the following regularity result: 
 

Remark 3.7: t  is bounded in 
1
3
tΞ  (with a bound independent of t ). 

 
4. REGULARITY OF THE TIME-DEPENDENT GLOBAL ATTRACTOR 
 
II. The second decomposition of the system equations 
 
We fixτ ∈ , and each initial data uτ τ∈  , decomposing ( , )U t τ  as 

( , ) ( , ) ( , )gU t u V t u W t uτ τ ττ τ τ= + , 

where ( , )v V t uττ=  and ( , )W t uτω τ= solves the following equations respectively: 

1 2( ) ( ) 0,
( , ) ,

t tt v t Av Av
V uτ

ε ε
τ τ

+ + =
 =

                                                                                                                   (4.1) 

and 

1 2( ) ( ) ( ) ,
( , ) 0,

t t

g

t t A A u g
W
ε ω ε ω ω ϕ

τ τ
+ + + =

 =


                                                                                                   (4.2) 

As a particular case of Lemma 3.4, we learn that 

4( , ) ,
t

tV t u C e tτ
ττ τ−

Ξ
≤ ≥    .                                                                                                           (4.3) 

 
Lemma 4.1: Under the assumptions of (1.2)-(1.5), for some ( ) 0M M= >A , We have the uniform bound 

τ
τ

τ
Ξ

sup ( , )
t

g
t

W t u M





.                                                                                                                           (4.4) 

 
Proof: We denote  

1
2

2 2 2
1 2( ) ( ) ( ) 2 ,t t A t A A g Aξ ε ω ε ω ω ω= + + − 〈 〉 , 

by (1.3), we have 

ω ξ ω
Ξ Ξ

( )
t t

c C t c C   
 

 

  .                                                                                                      (4.5) 



Cheng-xiu Qiang* / Existence and characterization of time-dependent global attractors for a class of nonclassical parabolic 
quations with critical exponent / IRJPA- 7(2), Feb.-2017. 

© 2017, RJPA. All Rights Reserved                                                                                                                                                                       507 

 
Multiplying (4.2) by tA Aω ω+ , we obtain 

1
2

1
2

2 2 2
1 2

2 2
1 2

( ) 2 ( ) 2 ( ) 2 2 ( ), 2 ,

2 ( ), .

t t

t

d t t A t A A u A g A
dt

u A A A

ξ ε ω ε ω ω ϕ ω ω

ϕ ω ε ω ε ω

+ + + + 〈 〉 − 〈 〉

′ ′+ 〈 〉 = +
                             (4.6) 

 
Noting that (1.2) and (1.3), and using Young and Poincaré inequalities, for 

1 2 1, , 0ρ ρ λ= >   small, we infer 

1
2

2 2
1 2( ) 2 ( ) 2 ( )

2 ( ), (2 2 ) , 2 ( ), .

t t

t

d t t t A t A
dt

u A g A u A

ξ ξ ε ω ε ω

ϕ ω ω ϕ ω

+ +

≤ − 〈 〉 − + 〈 〉 − 〈 〉

  

 
                                                               (4.7) 

 

Denoting by 0C >  a generic constant depending on the size of tA  in
1
3
tΞ , using the invariance of the attractor, we 

find 
1
3( , )
t

U t u Cτ
Ξ
≤ . 

 

Exploiting the embeddings  
3 101

5 5 5 12
6
5

( ) ( )
N

N
t H D A L −Ξ = = ⊂ Ω   and noting that

5 12 2 1
10 2 2
N N

N N
− +

⋅ <
−

, we get 

2
2

10
5 12

2
2

2

2 ( ), (1 )

(1 )

,
4

N
N

N
N

N
N

L

u A C u A

C u A

A C

ϕ ω ω

ω

ω

+
−

−

+
−

Ω
− 〈 〉 ≤ +

≤ +

≤ +

∫





                                                                                                     (4.8) 

and 
2

,(2 2 ) ,
2 gg A A Cω ω− + 〈 〉 ≤ + 


 .                                                                                                      (4.9) 

 
Similar to (4.8), we have 

22 ( ), 2t tu A A Cϕ ω ω− 〈 〉 ≤ + .                                                                                                              (4.10) 
 
It follows from (4.6)-(4.10) that 

( ) ( )
2

d t t C
dt
ξ ξ+ ≤


.                                                                                                                                (4.11) 

 
By the Gronwall lemma, and noting that(4.5), we can get (4.4) immediately. 
 
This completes the proof. 
 
Therefore, we have the following regularity result. 
 
Theorem 4.1: (Regularity of the time-dependent global attractor) Under the assumptions of (1.2)-(1.5), the time-
dependent global attractor { }t tA ∈=



A , tA  is bounded in 1
tΞ , with a bound independent of t . 

Indeed, we denote 

1
1

1{ : }
t

t tu u M
Ξ

Γ = ∈Ξ ≤ .                                                                                                                      (4.12) 

According to inequalities (4.3) and (4.4), for all t∈ , we have 
lim ( ( , ) , ) 0tdist U t Aττ

τ
→−∞

Γ = .                                                                                                                   (4.13) 

where dist  denote the Hausdorff semi-distance in tΞ , i.e. 

21 1

1 2 2( , ) sup ( , ) sup inf
t ty Bx B x B

dist B B dist x B x yΞ Ξ∈∈ ∈
= = − .                                                                          (4.14) 
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From Theorem 3.1, we know that the time-dependent global attractor { }t tA ∈=



A  is invariant, this means 

( , ) 0t tdist A Γ = .                                                                                                                                         (4.15) 
 

Hence, t t tA ⊂ Γ = Γ , i.e., tA  is bounded in 1
tΞ , with a bound independent of t . 
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