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ABSTRACT 
In this paper, we mainly investigate some properties of strongly n-Ding projective and injective modules under the 
extension of rings, which mainly including excellent extensions, polynomial extension and localizations. 
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1. INTRODUCTION 
 
Throughout the paper R is a commutative ring with identity element, and all R - module are unital. If M is any R -
module, we use )(MpdR and )(MidR to denote projective and injective dimensions of M . 
 
In [ ]5  and [ ]7 , the author introduced strongly Gorenste in flat and Gorenste in FP -injective module, which are 
defined as follows: 
 
Definition: Let n be a positive integer. 

(1) An R -module M is called stongly Gorenste in flat module (we called Ding projective module) if there is an 
exact sequence 

0 1
1 0:P P P P P→ → → → →   

Of projective right R -module with ( )10 PPKerM →≅  such that ( )QHomR ,−  leaves the sequences 
exact, where Q  is a flat R-module. 

(2) An R -module M is called Gorenste in FP -injective module (we called Ding injective module) if there is an 
exact sequence 

0 1
1 0:E E E E E→ → → → →   

Of injective right R -module with ( )10 EEKerM →≅  such that ( )−,IHomR  leaves the sequences exact, 
where I is an FP -injective module. 

 
The main purpose of this paper is to study some properties of strongly n-Ding projective and injective modules under 
excellent extensions, polynomial extensions and localizations, respectively and we get some interesting results. 
 
2. STRONGLY n-DINGPROJECTIVE AND INJECTIVE MODULES UNDER CHANGE OF RINGS 
 
We begin with the following lemmas. 
 
Lemma 2.1([11]): An R -module M is called stongly Ding projective module if and only if there exists a short exact 
sequence 00 →→→→ MPM , where P is projective module and ( ) 0,1 =FMExtR for all flat modules F . 
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Lemma 2.2([12]): An R-module Miscalled stongly Ding injective module if and only if there exists as hort exact 
sequence 00 →→→→ MEM , where E is injective module and ( ) 0,1 =MQExtR for all FP -injective 
modules Q . 
 
Definition 2.3: An R -module M is called strongly n-Ding projective module (S-n D- projective module for short) if 
there exists a short exact sequence 00 →→→→ MPM  with ( ) nPpdR ≤  and ( ) 0,1 =+ FMExtn

R for all flat 
modules F . 
 
Definition 2.4: An R -module M is called strongly n-Ding injective module (S-nD- injective module for short) if there 
exists a short exact sequence 00 →→→→ MEM with ( ) nEidR ≤ and ( ) 0,1 =+ MQExtn

R  for all FP -
injective modules Q . 
 
Proposition 2.5: Let R be a commutative ring and Q  a projective R -module. If M  is an S-nD-projective R -module, 
then QM ⊗ is an S-nD-projective R -module. 
 
Proof: Since M Is an S-nD-projective R-module, there is an short exact sequence 00 →→→→ MPM with

( ) nPpdR ≤ .Then 00 →⊗→⊗→⊗→ QMQPQM and ( ) nQPpdR ≤⊗ by [9, ch.2, Theorem3]. Let Q′
be any flat R -module. Then ( ) ( )( ) 0,,, =′=′⊗ QMExtQHomQQMExt i

RR
i
R by[9,p.256,Lemma9.20] for all 

ni > . Hence QM ⊗ is an S-nD-projective R-module. 
 
Proposition 2.6: Let R  and S be equivalent rings via equivalence F : R -Mod→ S -Mod and G : S -Mod→ R -Mod. 
Then 

(1) M is S-nD-projective R -Mod if and only if ( )MF  is S-nD-projective S -Mod.  

(2) M is S-nD-injective R -Mod if and only if ( )MF  is S-nD-injective S -Mod. 
 
Proof:  
(1) Since M is an S-nD-projective R -module, there is the short exact sequence 00: →→→→ MPMP , where

( ) nPpdR ≤ .Then ( ) ( ) ( ) ( ) 00: →→→→ MFPFMFPF  is a exact sequence of S -Mod with

( )( ) nPFpdR ≤ . Let Q  be any flat S -Mod. Then ( )( ) ( )( ) 0,, =≅ QGMExtQMFExt i
R

i
S for all ni > . Hence

( )MF  is S-nD-projective S -Mod. By ( ) MMGF ≅ . 
 
(2) By analogy with the proof of (1). 
 
A ring S is said to be an almost excellent extension of a ring R , if the following conditions are satisfied: (1) The ring

S is called right R -projective in case for any right S -module SM with an S -sub module RR MN implies SS MN .For 

example, every nn× matrix ring ( )RM n is right R -projective. (2) The ring extension RS ≥  is called a finite 

normalization extension in case there is a finite subset }{ nss ,,1  of S such that RsS
n

i
i∑= and ii RsRs = for

1, ,i n=   (3) A finite normalization extension RS ≥ is called an excellent extension in case condition (1) is satisfied 

and SR , RS are free module with a common as is }{ nss ,,1  . For example, every nn× matrix ring ( )RM n is an 
excellent extension. 
 
Proposition 2.7: Assume that RS ≥ is an excellent extension, if MR is a S-nD projective R -mod, then MS ⊗ is a S-
n D projective S -mod. 
 
Proof: There exists an exact sequence 00 →→→→ MPM in R -mod with ( ) nPpdR ≤ .Then

00 →⊗→⊗→⊗→ MSPSMS  is exact in S -mod, with ( ) nPSpdR ≤⊗ . Let Q  be any flat S -mod,  
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then Q  is a flat R -mod, and so ( ) ( ) 0,, =≅⊗ QMExtQMSExt i

R
i
S  by [9, p.258, 9.21] for all ni > . It follows that 

MS ⊗ is a S-nD projective S -mod. 
 
Proposition 2.8: Let R be a ring and let 1≥n  be a natural number. For any ( )RMM n∈ -Mod. Then 

(1) (1) MR is S-nD projective R -mod if and only if ( ) MRM n ⊗ is S-nD projective R -mod. 

(2) (2) MR is S-nD injective R -mod if and only if ( )( )MRMHom nR , is S-nD injective R -mod. 

If R is a ring, then [ ]xR is the polynomial ring. If M is a left R -module, write [ ] [ ] MxRxM R⊗= .Since [ ]xR is a 

free R -module and since tensor product commutes with sums, we may regard the elements of [ ]xM a s’ vectors’

iR
i mx ⊗ , 0≥i . Mmi ∈  with almost all 0=im . 

 
Proposition 2.9: Let R be a commutative ring. If M is a S-nD projective R -mod, then [ ]xM  is a S-nD projective

[ ]xR -mod. 
 
Proof: There is an exact sequence 00 →→→→ MPM in R -mod with ( ) nPpdR ≤ .so

[ ] [ ] [ ] 00 →→→→ xMxPxM is exact in [ ]xR -mod and [ ] [ ]( ) nxPpd xR ≤ . Let Q be any flat [ ]xR -mod. Then

[ ] [ ] N
R

N QQRQxRxQ ≅⊗≅⊗≅ .Hence [ ]xQ isa flat [ ]xR -module, and so Q is a flat R -module. Thus

[ ] [ ]( ) ( ) 0,, == QMExtQxMExt i
R

i
xR by [9, p.258, 9.21], for all ni > , and hence [ ]xM is an S-nD projective [ ]xR -

module. 
 
Let R  be a commutative ring and S a multiplicatively closed set of R .Then }{ SsRasaSRRS ∈∈=×=− ,~1

is a ring and }{ SsMxsxSMMS ∈∈=×=− ,~1 is an RS 1− -module. If P is a prime ideal of R and

PRS −= , then we will denote MS 1− , RS 1−
 by PM , PR respectively. 

 
Proposition 2.10: Let R be a commutative ring and S a multiplicatively closed set of R .If M is a S-nD projective R -
module, then MS 1− is an S-nD projective RS 1− -mod. 
 
Proof: Since M is a S-nD projective R -module, there exists an exact sequence 00 →→→→ MPM in R -mod 

with ( ) nPpdR ≤ .Then 00 111 →→→→ −−− MSPSMS is exact in RS 1− -mod and ( ) nPSpd RS ≤−
−

1
1 .Let Q

be any flat RS 1− -mod, then Q  is a flat R -module by [11, Lemma 3.20], so 

( ) ( ) ( ) [ ]1 1
1 1  9, .258,9.21  0  , , ,i i i

RS R S R
Ext S M Q Ext S R M Q E by p for alxt M Q l− −

− −≅ ⊗ ≅ =
 

,i n>
  

1Hnece S M− is an S-nD projective RS 1− -mod.
 

 
Proposition 2.11: Let R be a commutative ring and S a multiplicatively closed set of R .If RS 1− is a projective R -
module, then 

(1) If M is an S-nD injective R -module, then ( )MRSHom ,1−
 is an S-n D injective RS 1− -module. 

(2) For any R -module M , ( )MRSHom ,1− is an S-n D injective R -module if and only if ( )MRSHom ,1− is 

an S-n D injective RS 1− -module. 
 
Proof: There is an exact sequence 00 →→→→ MEM in R -mod with ( ) nEidR ≤ .Then

( ) ( ) ( ) 0,,,0 111 →→→→ −−− MRSHomERSHomMRSHom is exact in RS 1− -mod and

( )( ) nERSHomid RS ≤−
− ,1
1 by [6, Theorem 3.2.9]. Let I be any injective RS 1− -module. Then I is an injective R-

module by [4, lemma1.2].So ( )( ) ( ) 0,,, 1
1 =≅−
− MIExtMRSHomIExt i

R
i

RS
by [9, p.258, 9.21] for all ni > , and 

hence ( )MRSHom ,1−
 is an S-n D injective RS 1− -module. 
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(2) is obvious. 
 
Since ( )MRSHom ,1− is an S-n D injective RS 1− -module, then there exists an exact sequence

( ) ( ) 0,,0 11 →→→→ −− MRSHomEMRSHom in RS 1− - mod with ( ) nEid RS ≤−1 .Then E is an injective R -

module. Let I be any injective R -module. Then IS 1− is an injective RS 1− -module. So 
( )( )( ) ( )( ) 0,,,,, 1111

11 =≅ −−−−
−− MRSHomISExtMRSHomRSHomIExt i

RSRRS
i
R by [8, proposition 5.17] and by 

[9, p.258,9.21] for all ni > ,and hence ( )MRSHom ,1− is an S-n D injective R -module. 
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