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BOUNDEDNESS OF HIGHER ORDER COMMUTATORS
FOR THE PARAMETRIC MARCINKIEWICZ INTEGRAL ON HARDY SPACE

WU RUI-MIN*1, JIN CONGCHEN? AND ZHANG FANGHONG3

12,30ffice of Mathematics,
Longgiao College of Lanzhou University of Finance and Economics, Gansu Lanzhou, 730101.

(Received On: 18-03-17; Revised & Accepted On: 14-04-17)

ABSTRACT
The authors study the commutators and higher order commutators of para-metric Marcinkiewicz integrals and
obtain that the operators bounded from H}(R") to L (R") with the symbolb € BMO .
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1. INTRODUCTION

Let T be a Calderon-Zygmund singular integral operator. For a locally integral function b on R"; the commutator [b; T]
of T is defined by

[b, TTf (%) =b0)T (F)(x) =T (b )E).
It is well known that the Calderon-Zygmund singular integral operator T is bounded from H'(R")to L' (R")

However, it was observed in [7] that the corresponding result for [b, T] is false whenb is a BMO function. In 1995,
Perez in [7] introduced a subspace H; (R") ; and proved that [b, T ] is bounded operator from H. (R")to L' (R") for

b e BMO Following the definition of [8]. in 1998, Alvarez defined the atomic space H,'(R") for0 < p <1, and
proved that the commutator [b, T]is also bounded from H,”(R") to L"(R") for n/(n+1) < p <Z1in [9].

Before stating our results, let us first give the definitions and some known results on U, and ,uzm . Suppose that S"tis

the unit sphere in R"(n>2) equipped with the normalized Lebesgue measure do=do(X) . Let Q be a

homogeneous function of degree zero on R" satisfying €2 € Ll(SH) and the following property

LM Q(x)do(x)=0 )
In 1960, Heomander in [1] introduced the parametric Marcinkiewicz integrals;

up(fxx):[m 001 - )

where 0 < p < n and

F000=[,_ =Dt )y
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If p=1, then is the classical Marcinkiewicz integrals defined by Stein in [4]. Stein proved that if € is continuous and
satisfiesa Lip,(0 < a<1) condition on S”'ly then is of type (p,p) for 1 < p < 2, and of weak type (1,1). On the other
hand, letb € BMO(R”)and me N , the M order commutators generated by the parametric Marcinkiewicz integrals
1, and b is defined by

1 (x) = ( INEAG ti]
Where
D=, 060 b S ()

In [2], Ding, Lu and Xue obtained boundedness of commutators for the Marcinkiewicz integrals on Hardy space. In [3],

Shi and Jiang obtained the weighted L” boundedness of A, and ,u;’m with rough kernels. In this paper, we will

consider the boundedness of the higher order commutator ,uEm on the atomic-Hardy spaces H;m (RM.

To state our results we need some notations and definitions. A function (") on S"is said to satisfy the L -Dini
. . T q n-1 1 a)q (O-)
condition g >1,ifQ(x") e L'(S") and J.O—da < 0 2)
o
1

Where () =SUP([,.,| Q(ox) -Q(x) [ do(x)?

lplso

and is a rotationon S",| p|=]| p— 1 ||, We say that Q € Lip(S" ™) for 0< o <1.
If there exists a constant M>0 such that for any

X,y €S Q) -Qy) KM [x-y[".

Definition 1: Let b€ BMO(R"), me N and 1<t <oo. A function a(x) is said to be a (1, t, b™-atoms, if it
satisfies the following conditions:

@) sup p(a) = Q(x,, r);

(2)llall, < Q"

@), ae)dx=] _a(b(x)dx =---=[_a(x)b" (x)dx =0,
Where Q isaballin R",

Now let us state our main results.

Theorem 1: Let Q is a homogeneous function of degree zero on R" satisfying (1) and the L -Dini condition for
q > 1, Then there exists a constant C > 0, independent of f such that || ,uzm (O l<CI I,
bm

2. PROOF OF THEOREMS

Because the proof of the following Lemma is very similar to Lemma 5 in [6], we just formulate it.
Lemma 1: Suppose that is homogeneous of degree zero and satisfies L -Dini condition forq >1, If there exist a

constantery, 0 < oy <1/ 2 such that | X |< o, R then

1
I | Q(X_y) _ Q(y) |qdy q <CRn/q—(n—1) m"'j a)q (5) ds
R<W=2R™ |y —x|"P |y |"™” - R I/2R=<5<alXIR  § !

where the constant C > O is independent of R and X .
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When @ =1, from [3], we know the following conclusion immediately.

Lemma 2: Suppose that Q2 be a homogeneous function of degree zero on R" satisfying (1) and O<p<n.If
Qel'(S")(g>1) and me N,b(x) e BMO(R").
Then for 1< p < oo, there exists a constant C > 0, independent of f , such that || ,uim (O, =CIl 1, .

Now, let us turn to the proof of Theorem 1 only for the case m =1, When m >1, the proof is similar to the case
m =1, but more complex in the form and we omit the details by brevity.

Proof of Theorem 1: It suffices to prove that|| z,(a)(x) || ,.< C for any (1,t,b) -atom a(x)(L <t <) . Fix a ball

Q=0Q(X,,r)cR",and let Q" = BH%Q ,we have
oo @008 = [ pp@)dk+ [ s (2)(x)dx.

By Lemma2, H 6Ider 'S inequality and size condition of a(x) , We get
L "
Jo i @)= @ (] [ ()0 ax)
<[of (], Ja(ofax)" <jf Q[ <c

1 1
Where ¥+F =11t remains to show that

| = I(Q*)cyp(a)(x)dxsc :

Taking that (aer)I <a'+b' when a,b>0 and 0<1<1, we have
2

2
X=Xo|+21 (@] _ dt
IS'[(Q*)C J‘(" o J‘xyst(b(x)_b(y))ﬁa(y)dy 2o+l dx
ey o S |
” Q(x-y dt
+I(Q*)C J.‘X—XO‘+2r Ix—y<t(b(x)_b(y))ma(y)dy t2p+1 dx
Since |x—y| ~|X—XO|~|X—X0|+2I’ forany X e Q"andy € Q, we have
‘ 1 1 ‘ r
_ _C '
“x—y|2p (|x— x| +2r)” : x—y"" &
By (3), we have
Q X—y N
=l ||X - L0 4 y>||a<y)|[ P
[2(x-y)| ‘ 1 "
dyd
.[ J.R” X — y| || |“X y| (|X XO|+2I’)2p yax
<Cd MIQ I(Q»« n+1/2| Ib(x)—b(y)[dx[a(y)|dy
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<Cdﬂ2j ZL,MX 2t || n+]/2||b cl|dx|a(y)|dy

+Cd”2J' ZL | |Q(X_y)||b(y)—C1|dx|a(y)|dy

Q&= Jaldfu-yl<2i |X_y|””/2

= I1,1 + |1,2’

Where C, :ﬁkm b(X)|dX and Q;,; = {X x—y| < 2j+1d} . Below we give the estimates of 1., and I ,.

Using H older's inequality and the size condition of a(x) , We get

Yq
= Q(X_ y)q Q + C
s SCdMJ‘QJZ; J‘zld<xy<2“1dwdx} X(‘QJ 1‘le<x yl<2 1dﬁdx ‘a y)‘dy
(2j+ld)n/q (2j+1d)n/q’
(Zjd) (n+y/2)/q (Zjd)(”ﬂ/z)/d

< > 1Pllvo a d
CZ( )VIIII Jola(y)]dy

, Yt
<C bl Q" ([ Ja(y) @) <c.

<ca”3: Bl [V

On the other hand, note that

Q(x-y) 1
J.Zjdg‘xfy‘sziﬂd | n+1/2| dX < C [ K ] .

-y )"

SO

L2 <Cdl/ZjQ{2(211)]/2]|b(y)—cl||a(y)|dy

<c(fbt)-cf o] (J a0 o)

<C.

For 1,, using the vanishing condition of a(x) , We get
1

2 2
) dt
o Fl )

SCI(Q*)cIRn Q(X—}’)_Q(X—X?) x|b(x)—b(y)||a(y)|(r dt j dydx

[EET 7

f Q(x-y) Q(x=x)|P(x)-b(y)a(y)
Q) Jr

x=y["" x=x” X=X,

I oy, 2 (x)-b(y))a( )y

x—y|"” X—X,|

|dydx
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Where C

= |Q(x—y) Q(x—X, |
SCIQ§I2jd<X—xO<Zj+1d X_y|nfp _|X—Xo| ||b 2|dx|a(y)|dy

> Q(x-y) Qx
+CIQ,Z—1:LM£XXOsz“ld||x—y|"_p x- x0| ||b ~C,|dx[a(y)|dy
=1, +1,,.
3 :Q%J.Q |dX and QJ+1 { :|X_X0|<2j+ld}.By H 6|der's
jer i

Inequality, Lemma 1 and the size condition of a(x) , We have

=y [x=x|

q Yq
< Q(x-y) Q(x-x
21 = C."Q;ﬂ[_.‘zld<xxo<2]+ld| ( np) - ( nop)| dX}

)—C2|q' dx)w la(x)|dy

( 2) dgx—xo[<2! 1d

ens| 1| phevl/2d @
I 21d 21 a- 1(21 _|_J’XX0 yy/; 0 é d5]|a |dy
yo| 1 q "
{m"é}ﬂ b X)—C2| dXJ
j+

<C(1+J. d5j||b||smo |Q|]/t (.[ |a | dy) <C.

X

1
|Qj+l

On the other hand, by H older's inequality and the size condition of a X ) again, it follows

(%)
q
S X—y) Q(x—x)
ZZS'[Q;W{L'CJ<XXO<2”W| (y| P |X X |n0 dx} }H )_C2||a(x)|dy
S 1 g 1 e/l @, )
SCJQ;(Zjd)ln/q' (ZJd) (21 ooyl/2d }|b -C ||a |dy

<C (Ub(x) -C, |t, dy)w (‘[Q|a(y)|t dy)]/t <C.

Thus, we proved that | < C . Also, we comple the proof of Theorem 1.
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