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ABSTRACT 
In this paper, we determine generalized version of the first Zagreb index, general connectivity index, general sum 
connectivity index, general reformulated index and other topological indices for circumcoronene series of benzenoid. 
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1. INTRODUCTION  

 
The graphs considered here are finite, undirected without loops and multiple edges. Let G be a connected graph. The 
degree dG(v) of a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v will be 
denoted by uv. Let dG(e) denote the degree of an edge e in G, which is defined by dG(e) = dG(u) + dG(v) – 2 with e = uv. 
For all further notation and terminology we refer to reader to [1]. 
 
A molecular graph is a simple graph related to the structure of a chemical compound. Each vertex of this graph 
represents an atom of the molecule and its edges to the bonds between atoms. A topological index is a numerical 
parameter mathematically derived from the graph structure. These indices are useful for establishing correlation 
between the structure of a molecular compound and its physico-chemical properties. 
 
The first and second Zagreb indices of a graph G are defined as  
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These indices were introduced by Gutman et al. in [2]. 
 
Another vertex degree based topological index was defined in [2] and it was studied by Furtula et al. in [3].  
 
The forgotten topological index or F-index is defined as  
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The generalized version of the first Zagreb index [4] of a graph G is defined as  
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The modified first and second Zagreb indices [5] are respectively defined as  
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The first hyper-Zagreb index of a graph G is defined as  
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This index was introduced by Shirdel et al. in [6]. 

 
The sum connectivity index of a graph G is defined as  
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This index was introduced by Zhou and Trinajstić in [7]. 
 
The general sum connectivity index was introduced by Zhou and Trinajstić in [8] and it is defined as  
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This index was also studied, for example, in [9]. 
 
In [10], the second hyper Zagreb index of a graph G is defined as  
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The Randić index or product connectivity index of a graph G is defined as  
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This topological index was proposed by Randić in [11] and was studied, for example, in [12, 13]. 
 
The general product connectivity index [9, 14] is defined as  

( ) ( ) ( )
( )

2
aa

G G
uv E G

M G d u d v
∈

=   ∑                       (3) 

 
The reformulated first Zagreb index of a graph G is defined as  
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This index was introduced by Miličević et al. in [15]. 
 
Recently in [16], Kulli introduced the K-edge index of a graph G and it is defined as  
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This index was also studied in [17]. 
 
The general reformulated Zageb index [18] of a graph G is defined as  
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where a is a real number. 
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Figure-1: The graph of circumcoronene series of benzenoid Hk, k ≥ 1. 

 
In this paper, we compute several topological indices for cirumcoronene series of benzenoid Hk, k ≥ 1. 
 
The benzene molecule is a molecule in chemistry and nanosciences and it is useful to synthesize aromatic compounds. 
The circumcoronene series of benzenoid is a benzenoid family and it is symbolized by Hk, k ≥ 1 which consists copies 
of benzene C6 on circumference, see [19]. 
 
By algebraic method, we obtain |V(Hk)| = 6k2 and |E(Hk)| = 9k2 – 3k. From Figure 1, it is easy to see that there are two 
partitions of the vertex set of Hk as follows: 
 V2 = {u ∈ V(Hk) | ( ) 2

kHd u = }, |V2| = 6k. 

 V3 = {u ∈ V(Hk) | ( ) 3
kHd u = }, |V3| = 6k(k – 1). 

 
Also by algebraic method, we obtain three edge partitions of Hk based on the sum of degrees of the end vertices as 
follows: 
 E4 = *

4E  = {uv ∈ E(Hk)| ( ) ( ) 2
k kH Hd u d v= = },  |E4| = | *

4E  | = 6. 

 E5 = *
6E  = {uv ∈ E(Hk)| ( ) ( )2, 3

k kH Hd u d v= = }, |E5| = | *
6E  | = 12 (k – 1) 

 E6 = *
9E  = {uv ∈ E(Hk)| ( ) ( ) 3

k kH Hd u d v= = }, |E6| = | *
9E  | = 9k2 –  15k + 6. 

 
The edge degree partition of Hk is given in Table 1. 
 

( )
kHd u , ( )

kHd v  \e = uv ∈ E(Hk) (2, 2) (2, 3) (3,3) 

( )
kHd e  2 3 4 

Number of edges 6 12(k – 1) 9k2 –15k + 6 
Table-1: Edge degree partition of Hk 

 
We compute the generalized version of the first Zagreb index of Hk. 
 
Theorem 1: The generalized version of the first Zagreb index of Hk is given by  
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Proof: Let G = Hk. From equation (1) and by cardinalities of the vertex partition of Hk, we have  
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We obtain the following corollaries by using Theorem 1. 
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Corollary 1.1: The first Zagreb index of Hk is given by M1(Hk) = 54k2 – 30k. 
 
Proof: Put a = 1 in equation (5), we obtain the desired result. 
 
Corollary 1.2: The F-index of Hk is given by F(Hk) = 162k2 – 114k. 
 
Proof: Put a = 2 in equation (5), we obtain the desired result. 
 

Corollary 1.3: The modified first Zagreb index of Hk is given by ( ) 2
1

2 5 .
3 36

m
kM H k k= +  

 
Proof: Put a = – 3 in equation (5), we obtain the desired result. 
 
In the next result, we determine the general sum connectivity index of Hk, k ≥ 1. 
 
Theorem 2: The general sum connectivity index of Hk is given by  
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Proof: From equation (2) and cardinalities of the edge partitions of Hk, we have  
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We obtain the following corollaries by using Theorem 2. 
 
Corollary 2.1: The first Zagreb index of Hk is given by M1(Hk) = 54k2 – 30k. 
 
Proof: Put a = 1 in equation (6), we get the desired result. 
 
Corollary 2.2: The first hyper-Zagreb index of Hk is given by HM1(Hk) = 324k2 – 240k + 12. 
 
Proof: Put a = 2 in equation (6), we get the desired result. 

Corollary 2.3: The sum connectivity index of Hk is given by X(Hk) = 
1

10
 (15k2 – k + 1). 

Proof: Put a = 
1
2

−  in equation (6), we get the desired result. 

 
We now compute the general product connectivity index of Hk, k ≥ 1. 
 
Theorem 3: The general product connectivity index of Hk is given by  
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Proof: From equation (3) and by cardinalities of the edge partition of Hk based on the product degrees of the end 
vertices, we have 
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We obtain the following corollaries by Theorem 3. 
 
Corollary 3.1: The second Zagreb index of Hk is given by M2(Hk) = 81k2 – 63k + 6. 
 
Proof: Put a = 1 in equation (7), we get the desired result. 
 
Corollary 3.2: The second hyper Zagreb index of Hk is given by  

HM2 (Hk) = 729k2 – 783k + 150.  
 
Proof: Put a = 2 in equation (7), we get the desired result. 
 

Corollary 3.3: The modified second Zagreb index of Hk is given by ( ) 2
2

1 1 .
3 6

m
kM H k k= + +  

 
Proof: Put a = – 1 in equation (7), we get the desired result. 
 

Corollary 3.4: The Randić connectivity index of Hk is given by ( ) 23kH kχ = + ( )2 6 5− ( )1k −  

Proof: Put a = 
1
2

−  in equation (7), we get the desired result. 

 
In the following theorem, we compute the general first reformulated Zagreb index of Hk, k ≥ 1. 
 
Theorem 4: The general first reformulated Zagreb index of Hk is given by  

( ) ( ) ( )2
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Proof: From equation (4) and by the edge degree partition of Hk, we have 
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( ) ( )26 2 12 1 3 9 15 6 4a a ak k k= × + − × + − + ×  
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We obtain the following results by using Theorem 4. 
 
Corollary 4.1: The first reformulated Zagreb index of Hk is given by EM1(Hk) = 144k2 – 132k + 12. 
 
Proof: Put a = 2 in equation (8), we get the desired result. 
 
Corollary 4.2: The K-edge index of Hk is given by Ke(Hk) = 576k2 – 636k + 108. 
 
Proof: Put a = 3 in equation (8), we get the desired result. 
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