International Research Journal of Pure Algebra-7(6), 2017, 758-761

Available online through www.rjpa.info ISSN 2248-9037

ON SOME PROPERTIES OF METRIC F- STRUCTURE SATISFYING $\,F^{\,5}+F=0\,$

LAKHAN SINGH¹, SHAILENDRA KUMAR GAUTAM*²

¹Department of Mathematics, D. J. College, Baraut, Baghpat - (U.P.), India.

²Eshan College of Engineering, Mathura - (U.P.), India.

(Received On: 04-04-17; Revised & Accepted On: 05-05-17)

ABSTRACT

In this paper, we have studied various properties of the F- sturcture satisfying $F^5 + F = 0$. The metric F- structure, f induced on each integral manifold of tangent bundle l^* have also been discussed

Key words: Differentiable manifold, projection operators, tangent bundles and metric.

1. INTRODUCTION

Let V_n be a differentiable manifold of class C^{∞} and F be a C^{∞} (1,1) tensor defined on V_n such that

$$(1.1) F^5 + F = 0$$

we define the projection operators l and m on V_n by

$$(1.2) l = -F^4, m = I + F^4$$

From (1.1) and (1.2), we get

(1.3)
$$l+m=I$$
, $l^2=l$, $m^2=m$, $lm=ml=0$
 $lF=Fl=F$, $Fm=mF=0$,

where *I* denotes the identify operator.

Theorem 1.1: If rank((F)) = n then

(1.4)
$$l = I, m = 0$$

Proof: from the fact

$$(1.5) \quad rank((F)) + nulity((F)) = \dim V_n = n$$

Thus

(1.6)
$$nulity((F)) = 0 \Rightarrow ker((F)) = \{0\}$$

Thus

$$FX = 0 \implies X = 0$$

Then
$$FX_1 = FX_2$$

 $F(X_1 - X_2) = 0$
 $X_1 = X_2$ or F is 1-1

Moreover V_n being finite dimensional F is onto also F is invertible operating F^{-1} on

$$Fl = F$$
 and $mF = 0$, we get (1.4)

Theorem 1.2: if rank((F)) = n - 1 then

(1.7)
$$l = I - A \otimes T, m = A \otimes T, AoF = 0, FT = 0$$

Proof: from (1.1)

$$(1.8) F(F^4 + I) = 0$$

$$(1.9) \quad \text{Let } F^4 + I = A \otimes T$$

From (1.8) and (1.9)

$$(1.10)$$
 $FT = 0$

Also from (1.2) and (1.9)

$$l = -F^{-4} = I - A \otimes T$$
$$m = -F^{4} + I = A \otimes T$$

From (1.5) and (1.6)

$$F^{4}X + X = A \times T$$

$$F^{5}X + FX = A(FX)T$$

$$0 = A(FX)T$$

Thus AoF = 0

Theorem 1.3: Let the operator m & F satisfying

(1.11)
$$m^2 = m, Fm = mF = 0, (m + F^2)(m - F^2) = I$$

Then we get (1.1)

Proof: from
$$(m + F^2)(m - F^2) = I$$

 $m^2 - mF^2 + F^2m - F^4 = I$
 $m - 0 + 0 - F^4 = I$
 $mF - F^5 = F$
 $F^5 + F = 0$

2. METRIC F-STRUCTURE

If we define

(2.1)
$$F(X,Y) = g(FX,Y)$$
 is skew-symmetric.

$$(2.2) g(FX,Y) = -g(X,FY),$$

Theorem 2.1: the definitions in (2.1) and (2.2), we have

(2.3)
$$g(F^2X, F^2Y) = -g(X,Y) + m(X,Y)$$
, where

$$(2.4) \qquad m(X,Y) = g(mX,Y) = g(X,mY).$$

Proof: From (1.2), (1.3) and (2.2), (2.4), we have

(2.5)
$$g(F^{2}X, F^{2}Y) = g(X, F^{4}Y)$$
$$= g(X, -lY)$$
$$= -g(X, lY)$$
$$= -g(X, (I - m)Y)$$

Lakhan Singh¹, Shailendra Kumar Gautam*² / On Some Properties of Metric F- Structure Satisfying $F^5 + F = 0$ / IRJPA- 7(6), June-2017.

$$= -g(X,Y) + g(X,mY)$$

= -g(X,Y) + m(X,Y)

Theorem 2.2: $\{F,g\}$ is not unique

Proof:

(2.6) let
$$\mu F' = F \mu$$
, $g(X,Y) = g(\mu X, \mu Y)$

Then from (1.1) and (1.2), (1.3), (2.6)

(2.7)
$$\mu F'^5 = F^5 \mu = -F \mu = \mu F'$$
 or

(2.8)
$$F'^5 + F' = 0$$
.Also

(2.9)
$${}^{\prime}g(F'^{2}X, F'^{2}Y) = g(\mu F'^{2}X, \mu F'^{2}Y)$$

$$= g(F^{2}\mu X, F^{2}\mu Y)$$

$$= g(\mu X, F^{4}\mu Y)$$

$$= g(\mu X, -l\mu Y)$$

$$= g(\mu X, -(l-m)\mu Y)$$

$$= -g(\mu X, \mu Y) + g(\mu X, m\mu Y)$$

$$= -{}^{\prime}g(X, Y) + {}^{\prime}m(X, Y)$$

3. INDUCED STRUCTURE f:

Define

$$(3.1) fX' = FX' for X' \in l^*$$

Theorem 3.1: If f satisfying (3.1) and F (1.1) then $\{f^2\}$ is an almost complex structure.

Proof: from (1.2),(1.3) and (3.1)

(3.2)
$$f^{4}lX' = F^{4}lX'$$
$$= -l^{2}X'$$
$$= -lX'$$

Thus $\left\{f^2\right\}$ as an almost complex structure on l^*

Also

(3.3)
$$\mu l' = -\mu F'^4$$
$$= -F^4 \mu$$
$$= l \mu$$

(3.4)
$$\mu m' = \mu (I + F'^4)$$

 $= \mu + \mu F'^4$
 $= \mu + F^4 \mu$
 $= (I + F^4) \mu$
 $= m \mu$

Lakhan Singh¹, Shailendra Kumar Gautam*² / On Some Properties of Metric F- Structure Satisfying $F^5 + F = 0$ / IRJPA- 7(6), June-2017.

REFERENCES

- 1. K. Yano: On a structure defined by a tensor field f of the type (1,1) satisfying $f^3+f=0$. Tensor N.S., 14 (1963), 99-109.
- 2. R. Nivas & S. Yadav: On CR-structures and $F_{\lambda}(2\nu+3,2)$ HSU structure satisfying, $F^{2\nu+3}+\lambda^{r}F^{2}=0$ Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).
- 3. Abhisek Singh, Ramesh Kumar Pandey and Sachin Khare On horizontal and complete lifts of (1, 1) tensor fields F satisfying the structure equation F(2k + S, S) = 0. International Journal of Mathematics and soft computing. Vol. 6, No. 1 (2016), 143-152, ISSN 2249-3328.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2017, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]