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ABSTRACT 
A Generalized Andre plane of order 34 has been reported in [19]. Another Generalized Andre plane of order 34 is 
constructed and its translation complement is computed which is found to be of order 6400 and this plane is shown to 
be different from the plane already reported [19] in view of its orbit structure. 
 
 
1. INTRODUCTION 
 
One of the methods of constructing translation planes is through t-spread sets given by Rao and Davis [14]. Bruck and 
Bose have contributed to the theory of t-spread sets over finite fields for the construction of non Desarguesian 
translation planes through their papers [1], [2]. In this paper we have given the construction of a 3-spread set which 
produces a V-W system [1, p.99] and in turn coordinatizes a translation plane of order 34. The plane thus constructed is 
shown to be a generalized Andre plane using the technique given by D.A.Foulser [6]. Collineation groups of the 
translation plane are determined as they play a vital role in determining the translation complement of the plane. The 
translation complement is found to be of order 6400 and this plane is shown to have an orbit structure 2, 40, 40 which is 
different from the plane already reported [19]. 
 
2. DESCRIPTION OF THE PLANE π AND IDENTIFYING THE PLANE AS A GENERALIZED ANDRE 
SYSTEM 
 
It is well known that a translation plane π of finite order can be coordinatized by a V-W system. Conversely given a       
V-W system (Q, +, ∙) a translation plane π(Q) can be associated with Q [8, pp 362]. A V-W system can be constructed 
from a t-spread set. [1, pp95]. Thus the construction of translation plane of order qt+1 reduces to the construction of       
t-spread set. [3, pp220]  
 
t-spread set: Let t be a positive integer. A set C    of (t+1) by (t+1) matrices over F is at-spread set over F if it satisfies  

a) │C  │=  qt+1,  C  contains the zero and identity matrices. 
b) For all X, Y∈C ,   X  ≠ Y  => det (X-Y)  ≠ 0. 

 
Here det A denotes the determinant of the matrix A.    
 
Throughout this paper F, (abcd, efgh, klmn, pqrs) and i.p denote the Galois Field GF(3), the 4x4 matrix 



















srqp
nmlk
hgfe
dcba

 and ideal point respectively. 

 
For M, N ∈ GL(4, 3), T(M, N) = {A∈GL(4, 3) │ A-1MA=N}, Z(M) = T(M,M). 
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Let G denote the translation complement of the translation plane π; G0 (G81) denotes the collineation subgroup of G 
fixing the i.p 0 (81);  G0,81 denotes the (autotopism) collineation subgroup of G fixing the i.ps 0,81 and G0,81,1 denotes 
the subgroup of G (conjugation collineation group) fixing the i.ps 0, 81, 1; In general Gi, j, k, l, m denotes the collineation 
subgroup of G fixing the i.ps i, j, k, l, m. 
 
Lemma 2.1: Let C    be a t-Spread set over GF(q), q = pr, p is prime ≥ 3, r is a natural number with the property, 

-M ∈C  for all M ∈C                                                                                                                                                                                                            (2.1) 
 
Let  𝜋(C  )  be the  translation associated with C . Then [16] 

(a) There exists a collineation which fixes V(∞) and moves V(0) onto V(S), S ∈C    if and only if M+S ∈C   for all   
M ∈C . 

(b) If there exists a collineation which maps V(S) onto V(∞) and V(∞) onto V(0)  where S∈C, S ≠ 0 then M+S∈C   
for  all M ∈C .. 

(c) There exists a collineation which fixes V(0) and moves V(∞) onto V(S), S∈C, S ≠ 0 if and only if          
(𝑀−1 + 𝑆−1) −1 ∈C  for all M ∈C … 

(d) If there exists a collineation which maps V(S) onto V(0) and V(0) onto V(∞)  where  S∈C, S ≠ 0 if and only if 
(𝑀−1 + 𝑆−1) −1 ∈Cfor all M ∈C   . 

 
Lemma 2.2: [16] Let 𝜋 (C  )  be the translation plane associated with a t- spread set C    and has the property that every 
collineation  which fixes V(0) also fixes V(∞). 

(a) If there exists a collineation which fixes V(R) and moves V(S), R, S ∈C  . then no collineation of 𝜋(C  ) maps 
V(0) onto V( R) and V(∞) onto V(S). 

(b) If there exists a collineation which fixes V(R ) and moves V(S), R, S ∈C   . then no collineation of 𝜋(C  )  maps 
V(∞) onto V( R) and V(0) onto V(S). 

 
2.3 Construction of translation plane π 
 
The translation plane π under study is constructed through a 3- spread set C   over F. The spread set C    is given by 

C   = {0}∪ A0 G    ∪A1G   ∪A2G   ∪A3G  e 
where   G    = < X,Y ∕ X,Y∈ GL(4,3), X5 = I, Y2 = −I, Y-1XY = X-1>  is a metacyclic group of order 20 in  GL(4, 3) 
where X = (2120, 0212, 2221, 1022), Y = (1100, 1200, 2012, 1222) 
and A0 = (1000, 0100, 0010, 0001) 

A1 = (0001, 1001, 1122, 1221) 
A2 = (0010, 0001, 1100, 0110) 
A3 = (0100, 0010, 0001, 1100) 

Let M0 be the zero matrix and M10j+i  = 
1j

A M11
kM2

i-1   0 ≤  i ≤ 10, 0 ≤ j ≤ 7, where 1j = 




2
j

, k = j  - 2 1j .  

The matrices Mi, 0 ≤  𝑖 ≤ 80 are tabulated in Table 1 along with their characteristic polynomials. 
 
The entry [abcd] in table 1 against i indicates that the matrix Mi of C   has C.P λ4 +a λ3+bλ2+c λ+d. 
 

Table-1 
I Mi C.P of Mi  I Mi C.P of Mi 

0 (0000,0000,0000,0000)   41 (0010,0001,1100,0110) [0121] 
1 (1000,0100,0010,0001) [2021]  42 (1112,2011,1001,1200) [2211] 
2 (1210,0121,1112,2011) [2121]  43 (0102,2210,0221,1122) [0121] 
3 (2201,1020,0102,2210) [1111]  44 (1110,0111,1111,1211) [2101] 
4 (1010,0101,1110,0111) [2121]  45 (2110,0211,1121,1212) [1101] 
5 (2022,2102,2110,0211) [1111]  46 (0020,0002,2200,0220) [0111] 
6 (2000,0200,0020,0002) [1011]  47 (2221,1022,2002,2100) [1221] 
7 (2120,0212,2221,1022) [1111]  48 (0201,1120,0112,2211) [0111] 
8 (1102,2010,0201,1120) [2121]  49 (2220,0222,2222,2122) [1101] 
9 (2020,0202,2220,0222) [1111]  50 (1220,0122,2212,2121) [2101] 
10 (1011,1201,1220,0122) [2121]  51 (2012,1222,2000,0212) [0001] 
11 (1100,1200,2012,1222) [0201]  52 (1221,1002,2120,2010) [0001] 
12 (1001,1122,1221,1002) [0201]  53 (2021,2202,1102,0202) [0001] 
13 (0221,1211,2021,2202) [0201]  54 (0022,0021,2020,1201) [0001] 
14 (1111,1212,0022,0021) [0201]  55 (0210,1202,1011,0100) [0001] 
15 (1121,0220,0210,1202) [0201]  56 (1021,2111,1000,0121) [0001] 
16 (2200,2100,1021,2111) [0201]  57 (2112,2001,1210,1020) [0001] 
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2.4. Translation plane π associated with the t-spread set C  . 
 
The translation plane π under study is constructed through the 3-spread set C  over F by considering 4-dimensional 
subspaces Vi, 0 ≤ i ≤ 81 of V(8, 3), the 8-dimensional vector space over F  as follows: 
Let Vi = {(x, y) / y = xMi, x∈F4}, 0 ≤ i ≤ 80, V 81 = {(0,y ) / y ∈  F4}. The incidence structure whose points are vectors 
of V = F8 and whose lines are Vi, 0 ≤ i ≤  81 and their cosets in the additive group of V with inclusion as incidence 
relation is the translation plane π associated with the 3-spread setC  .  The matrices of C   are not closed under addition 
and therefore the translation plane is non Desarguesian and the spread set C   has the property  -M ∈C   for all M ∈C( 
(2.1) 
 
2.5. Left and Middle nuclei of the t-spread set: If C   is a t-spread set then 
 Mλ = {M∈ C׀C M=C  } 
 Mµ = {M ∈C׀MC=C  } 
 
Left nucleus Mλ and middle nucleus Mµ are multiplicative groups of GL(t+1, q) and if M ∈ C  and  M2∉C   Then            
M ∉Mλ∪Mµ. It can be observed that the left and middle nuclei of the above 3-spread set C   are such that Mλ = Mµ =G     
 
2.6. V-W system associated with the spread set C      
 
Let (Q, +,  ∙ ) be a system constructed from the 3-spread set C   where  Q = F4, the operation ‘ +’ is the ordinary vector 
sum. Let e = (1000). For each y ∈  Q there is a unique matrix M ∈ C   (denoted by M(y)) such that y = e M. For             
x, y ∈  Q, y ≠ 0 define y.x= x M(y) and 0.x = 0. The system (Q, +, ∙) is a left V-W system coordinatizing the translation 
plane π. Let Nλ, Nµ be the left and middle nuclei of the V-W system (Q, +,  ∙) 
 
So Nλ= < (1210),(1100)> = Nµ. Nλ∩Nµ contains a unique cyclic subgroup generated by g of order 10 where g= (1210).  
 
2.7. V-W system (Q, +, ∙ ) is a generalized Andre system or λ -system: 
 
The quadruples of Q are indexed as follows Q = {xi׀ xi = eMi, Mi∈ C    , 0 ≤ i ≤ 80} where e = (1000) and x2= (1210) = g 
 
We observe the following:   

X10j+1. g =   g
)110(3 +jxλ

. x10j+1 ⇔ gM(x10j+1) =  x10j+1 M(g
)110(3 +jxλ

) 

                               ⇔ g A
1j

M11
kM2

i-1 = e A
1j

M11
kM2

i-1M2
)110(3 +jxλ

 
 

17 (2002,2211,2112,2001) [0201]  58 (1012,1101,2201,0101) [0001] 
18 (0112,2122,1012,1101) [0201]  59 (0011,0012,1010,2102) [0001] 
19 (2222,2121,0011,0012) [0201]  60 (0120,2101,2022,0200) [0001] 
20 (2212,0110,0120,2101) [0201]  61 (0100,0010,0001,1100) [0022] 
21 (0001,1001,1122,1221) [0102]  62 (0121,1112,2011,1001) [0022] 
22 (2011,0221,1211,2021) [0102]  63 (1020,0102,2210,0221) [2112] 
23 (2210,1111,1212,0022) [0102]  64 (0101,1110,0111,1111) [0202] 
24 (0111,1121,0220,0210) [0102]  65 (2102,2110,0211,1121) [1122] 
25 (0211,2200,2100,1021) [0102]  66 (0200,0020,0002,2200) [0012] 
26 (0002,2002,2211,2112) [0102]  67 (0212,2221,1022,2002) [0012] 
27 (1022,0112,2122,1012) [0102]  68 (2010,0201,1120,0112) [1122] 
28 (1120,2222,2121,0011) [0102]  69 (0202,2220,0222,2222) [0202] 
29 (0222,2212,0110,0120) [0102]  70 (1201,1220,0122,2212) [2112] 
30 (0122,1100,1200,2012) [0102]  71 (1200,2012,1222,2000) [0202] 
31 (1222,2022,2102,2110) [2002]  72 (1122,1221,1002,2120) [0202] 
32 (1002,2000,0200,0020) [2002]  73 (1211,2021,2202,1102) [0202] 
33 (2202,2120,0212,2221) [1222]  74 (1212,0022,0021,2020) [0202] 
34 (0021,1102,2010,0201) [0102]  75 (0220,0210,1202,1011) [0202] 
35 (1202,2020,0202,2220) [2212]  76 (2100,1021,2111,1000) [0202] 
36 (2111,1011,1201,1220) [1002]  77 (2211,2112,2001,1210) [0202] 
37 (2001,1000,0100,0010) [1002]  78 (2122,1012,1101,2201) [0202] 
38 (1101,1210,0121,1112) [2212]  79 (2121,0011,0012,1010) [0202] 
39 (0012,2201,1020,0102) [0102]  80 (0110,0120,2101,2022) [0202] 
40 (2101,1010,0101,1110) [1222]  81                -----  
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                              ⇔ g A
1j

M11
k    = e A

1j
M11

kM2
)110(3 +jxλ

 

                              ⇔ g = e (A
1j

( M11
kM2

)110(3 +jxλ

M11
-k) A

1j
-1) 

                               ⇔ λ( x10j+1) = 0  when j = 0, 3, 4, 6 
                                       = 2            j = 1, 2. 5, 7                                                               I 
         
For 0 ≤ 𝑗 ≤ 7, 1 ≤ 𝑖 ≤ 10 define λ( x10j+i) =  λ( x10j+1)                                                               II 
 

Now we see    X10j+i . g = g
)10(3 ijx +λ

. x10j+i ⇔ gM(x10j+i) =  x10j+iM(g
)110(3 +jxλ

) 

                                                    ⇔ g A
1j

M11
kM2

i-1 = e A
1j

M11
kM2

i-1M2
)110(3 +jxλ

 

                                                    ⇔ g A
1j

M11
k    = e A

1j
M11

kM2
)110(3 +jxλ

 

                                                    ⇔ x10j+1.g =  g
)110(3 +jxλ

. x10j+1 
 
From the above it is clear that the mapping λ: Q*→Z4 (integers modulo 4) defined in I and II satisfy the property      

x.g = g
( )xλ3 . x for all x∈Q*. [By theorem in 13pp 541]  V-W system is a λ- system. 

 
3. COLLINEATIONS OF THE TRANSLATION PLANE π 
 
Any non- singular linear transformation on V=F8 induces a collineation of π fixing the point corresponding to the zero 
vector if and only if the linear transformation permutes the subspaces Vi, 0 ≤ I ≤ 81 among themselves.  Equivalently, a 

non singular linear transformation T = 







ED
CB

, where B, C, D and E are 4x4 matrices over F, induces a collineation 

of π fixing the point corresponding to the zero vector if and only if the following conditions (a) and (b) are satisfied.[17, 
Theorem 1] 

(a) If D is non-singular, then D-1E ∈C   , if D is singular then D is the zero matrix and E is non-singular. 
(b) For M ∈Ci f (B + MD) is non-singular, then (B+MD)-1(C+ME) ∈Cif (B+MD) is singular then (B+MD) is 

the zero matrix and (C+ME) is non- singular. 
The group of all collineations leaving the point corresponding to the zero vector of π invariant is called the 

translation complement of π. Throughout this paper, by a collineation we mean a collineation from the translation 
complement of π.  
 
3.1. Collineations corresponding to the Left and middle nuclei  
 

The mappings 𝛼 = �𝐼 0
0 𝑀2

�, 𝛽 =   �𝐼 0
0 𝑀11

�, 𝛾1 =  �𝑀2
−1 0

0 𝐼
�, 𝛾2 =  �𝑀11

−1 0
0 𝐼

� are all collineations of π and the 

actions of the collineations 𝛼 , 𝛽 on the set of i.ps. of  π are furnished below: 
 𝛼 ∶  (0) (81) (1, 2,…, 10) (11, 12,…, 20) (21, 22,…,30) (31, 32,…,40) 

 (41, 42,…, 50) (51, 52,…, 60) (61, 62,…, 70) (71, 72,…, 80) 
 
𝛽 ∶ (0) (81) (1, 11, 6, 16) (2, 20, 7, 15) (3, 19, 8, 14) (4, 18, 9, 13) (5, 17, 10, 12) (21, 31, 26, 36) (22, 40, 27, 35) 

(23, 39, 28, 34) (24, 38, 29, 33) (25, 37, 30, 32) (41, 51, 46, 56) (42, 60, 47, 55) ((43, 59, 48, 54) 
(44, 58, 49, 53) (45, 57, 50, 52) (61,71,66,76) (62,80,67,75) (63,79,68,74) (64,78,69,73) (65,77,70,72) 

 
Also    𝛾𝑖

−1𝛼 𝛾𝑖 =  𝛼,     𝛾𝑖
−1𝛽 𝛾𝑖 = 𝛽 ,    i = 1,2. 

 
The actions of the collineations 𝛾1, 𝛾2 on the set of i.ps of π are furnished below. 
 
𝛾1: (0) (81) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) (11, 20, 19, 18, 17, 16, 15, 14, 13, 12) 

(21, 30, 29, 28, 27, 26, 25, 24, 23, 22) (31, 32, 33, 34, 35, 36, 37, 38, 39, 40) 
(41, 42, 43, 44, 45, 46, 47, 48, 49, 50) (51, 60, 59, 58, 57, 56, 55, 54, 53, 52) 
(61, 62, 63, 64, 65, 66, 67, 68, 69, 70) (71, 80, 79, 78, 77, 76, 75, 74, 73, 72) 

 
𝛾2 : (0) (81) (1, 11, 6, 16) (2, 12, 7, 17) (3, 13, 8, 18) (4, 14, 9, 19) (5, 15, 10, 20) 

(21, 32, 26, 37) (22, 33, 27, 38) (23, 34, 28, 39) (24, 35, 29, 40) (25, 36, 30, 31) 
(41, 59, 46, 54) (42, 60, 47, 55) (43, 51, 48, 56) (44, 52, 49, 57) (45, 53, 50, 58) 
(61, 80, 66, 75) (62, 71, 67, 76) (63, 72, 68, 77) (64, 73, 69, 78) (65, 74, 70, 79) 
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Homology groups; [9, pp 385]: From the left nucleus of the plane and the collineations α, 𝛽 it is clear that <α, 𝛽> is the 
((∞), [0, 0]) - homology group H1 of π. From the middle nucleus and the collineations γ1, γ2 of π < γ1, γ2 > is the ((0), 
[0])-homology group H2 of π. Both homology groups are meta cyclic groups of order 20. The collineation group            
<H1, H2> = < α, 𝛽, γ1, γ2 > divides the set of i.ps of π into six orbits Oi, 1 ≤ 𝑖 ≤ 6 of lengths 1, 1, 20, 20, 20, 20 
respectively  where O1 = {0}, O2 = {81}, O3 = { i│ 1≤ i  ≤ 2 0}, O4 = { i│21 ≤ i ≤ 40} ,O5 = {i│41 ≤ i ≤ 60},                  
O6 = { i│61 ≤ i ≤ 80} 
 
3.2. Conjugacycollineations of the plane 
 

A mapping δ = 







A

A
0

0
, where A ∈GL(4, 3) induces a conjugation collineation of π if A-1C  A = C. The set of all 

conjugation collineations of π forms a group called the conjugation collineation group, and this group fixes the ideal 
points corresponding to V(0),V(∞), and V(I). Conjugacy collineations of the plane keeps the left and middle nuclei of 
C  invariant. From Table 1the matrices Mi ,i = 3,5,79 are the only matrices with C.P [1111] and the matrices                
Mi, 11 ≤ i  ≤ 2 0 are the only matrices with C.P  [0201] and the matrices Mi, i = 41,43 are the only matrices with C.P. 
[0121]. So every collineation either fixes the i.ps 41 and 43 or flips them while keeping the set of i.ps S = {3, 5, 7.9} 
and  𝑆’ = {i│ 11 ≤ i ≤ 2 0} invariant separately. In order to keep the set of i.ps of S and 𝑆’ invariant under δ the matrix 
A of δ belong to the following sets:  
   K1 = Z(M3) ∩  Z(M41)                          K4 = Z(M3) ∩  T(M41, M43) 
   K2= T(M3, M9) ∩  Z(M41)        K5 = T(M3, M9) ∩ T(M41, M43)  
   K3 = T (M3, M7) ∩  Z(M41)                  K6 = T(M3, M7) ∩  T(M41, M43) 
 
The sets K2, K3, K4 and K6 are empty. K1 = Z(M3), K5 = T(M3, M9). No conjugacy collineation maps the i.p 3 onto the 
i.p 7 and every conjugation collineation which fixes the i.p. 3 also fixes the i.p. 41 and every conjugation collineation 
that flips the i.ps. 3,9 also flips the i.ps 41,43. It follows that every conjugation collineation either fixes the i.p.3 or flips 
the i.ps. 3, 9 while keeping the set of i.ps. of 𝑆’ invariant. 
 
Also since Mλ∩Mµ = G  .each matrix of G    induces a conjugacycollineation. Let δ1 = �𝐴 0

0 𝐴� where  
A = A(1, 1) ∈ Z ( M3) ∩ Z ( M11). The collineation δ1fixes all the i.ps.of the plane 𝜋 and G0,81,1,3,11 =  < 𝛿1 >≅ GF*( 32 ) 
and it is of order 8 . 
 
If the  mapping δ fixes the i.p.3 and maps the i.p. 11 onto 12, then the matrix A of  δ  belongs to Z (M3) ∩ T (M11 ,M12) 
where 

Z (M3) ∩ T (M11, M12) = �𝐴(𝑐, 𝑑) =  �

2𝑐 + 2𝑑 2𝑐 𝑐 𝑑
𝑑 2𝑐 2𝑐 𝑐
𝑐 𝑐 + 𝑑 2𝑐 2𝑐

2𝑐 0 𝑐 + 𝑑 2𝑐

�  | (𝑐, 𝑑) ≠ (0,0), 𝑐, 𝑑 ∈ 𝐹� 

 
If  A = A(0,1) = (2001, 1000, 0100, 0010), then A-1M21 A = M22, A-1M41A = M41, A-1M61A = M61.  
 

The matrix A induces a conjugation collineation 𝛿2= 







A

A
0

0  

 
The action of the conjugation collineation 𝛿2 on the set of i.ps. of πis furnished below: 
𝛿2:  (0) (81) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11, 12, 13, 14, 15, 16, 17, 18, 19, 20) 

(21, 22, 23, 24, 25, 26, 27, 28, 29, 30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) 
(41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51, 52, 53, 54, 55, 56, 57, 58, 59, 60) 
(61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71, 72, 73, 74, 75, 76, 78, 79, 80) 

 
Since the collineation 𝛿2 fixes the i.p.3 which is transitive on the set of i.ps. of 𝑆’, the collineation group G0,81,1,3 is 
transitive on 𝑆’. Now 

G0,81,1,3 = ⋃ 𝐺0,81,1,3,11
9
𝑖=0 δ2 

i  = <δ1 , δ2> = <δ2> since δ2
10 = δ1

5 

 
│G0,81,1,3│ = |𝑆′|.│G0,81,1,3,11│= 10 x 8 = 80 

Let 𝛿3= 𝛾2
−1 𝛽. The mapping 𝛿3 is a collineation of π since it is the product of two collineations and flips the i.ps. 3 and 

9. The action of  𝛿3 can be computed from the actions of 𝛾2 and 𝛽 and it is given by 
𝛿3 : (0) (81) (1) (2, 10) (3, 9) (4, 8) (5, 7) (6) (11) (12, 20) (13, 19) (14, 18) (15, 17) (16) (21, 30) 

(22, 29) (23, 28) (24, 27) (25, 26) (31, 32) (33, 40) (34, 39) (35, 38) (36, 37) (41, 43) (42) (44, 50) (45, 49) 
(46, 48) (47) (51, 59) (52, 58) (53, 57) (54, 56) (55) (60) (61, 62) (63, 70) (64, 69) (65, 68) (66, 67) (71, 80) 
(72, 79) (73, 78) (74, 77) (75, 76). 
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A coset decomposition of G0,81,1 is given below 

G0,81,1 = G0,81,1,3⋃ G0,81,1,3𝛿3 =  <𝛿2, 𝛿3> 
 
�G0,81,1� = 2 �G0,81,1,3� = 2 x 80 = 160 

  
Thus every collineation of  𝜋 that fixes the i.ps. 0, 81, 1, 3, 11 also fixes all the i.ps. of  𝜋. 
 
Therefore the collineation group G0, 81, 1, 3, 11 accounts for the ((0, 0), (∞)) – homology group H3 of 𝜋 and the kernel K 
of 𝜋 (or the V–W system Q) is GF(32) 
 
3.3. Autotopism Collineation Group G0,81 of 𝝅 
 
Let 𝜃 = �0 𝐴

𝐵 0� where A = (0010, 0001, 1100, 0110), B = 𝐴 𝑀61
−1 = (0100, 0010, 0001, 1100) 

 
The mapping 𝜃 maps the matrix M ∈C   onto the matrix M61A-1M-1A and induces a collineation of 𝜋 if 𝜃  permutes the 
subspaces Vi, 1≤ i ≤ 80 among themselves. It may be seen that  
𝜃: M2⟶M10, M11⟶M74, M21⟶ M54, M41⟶ M37, M61⟶ M1 
 
Further 𝜃 maps the subspaces corresponding to the i.ps. 0, 81, 1 onto 81, 0, 61 respectively and V21𝜃 = V54, V41𝜃 = V37, 
V61𝜃 = V1  Also 𝜃−1𝛼𝜃 =  𝛾1

−1,  𝜃−1𝛽𝜃 =  𝛾2
−1𝛾1

−9. From these relations we get the following: 
V1+ i𝜃 = 𝑉61+𝑘 1   where 𝑘1 ≡ 9𝑖 (𝑚𝑜𝑑10) 
V11+ i𝜃 = 𝑉71+𝑘 2   where 𝑘2 ≡ 3 + 𝑖 (𝑚𝑜𝑑10) 
V21+ i𝜃 = 𝑉51+𝑘2  
V31+ i𝜃 = 𝑉41+𝑘3   where 𝑘3 ≡ 6 + 9𝑖 (𝑚𝑜𝑑10) 
V41+ i𝜃 = 𝑉31+𝑘3  
V51+ i𝜃 = 𝑉21+𝑘4      where 𝑘4 ≡ 4 + 𝑖 (𝑚𝑜𝑑10) 
V61+ i𝜃 = 𝑉1+𝑘1   and     V71+i𝜃 = 𝑉71+𝑘2  

 
From the above it is clear that 𝜃 permutes the subspaces of the spread S    among themselves. Thus  𝜃 is a collineation 
of  𝜋 whose action on the set of i.ps. of 𝜋 is as follows: 
 
𝜃 :   (0, 81) (1, 61) (2, 70) (3, 69) (4, 68) (5, 67) (6, 66) (7, 65) (8, 64) (9, 63) (10, 62)            

(11, 74, 18, 71, 15, 78, 12, 75, 19, 72, 16, 79, 13, 76, 20, 73, 17, 80, 14, 77) 
(21, 54, 28, 51, 25, 58, 22, 55, 29, 52, 26, 59, 23, 56, 30, 53, 27, 60, 24, 57) 
(31, 47) (32, 46) (33, 45) (34, 44) (35, 43) (36, 42) (37, 41) (38, 50) (39, 49) (40, 48) 

 
Lemma 3.4: (a) No collineation of 𝜋 flips the i.ps. 0, 81 and fixes the i.p.1. 
 
Proof: A collineation with the required action on the set of i.ps. of 𝜋 is a mapping 𝜇 of the form �0 𝐴

𝐴 0�, A ∈ GL(4,3) 
is such that for each non zero matrix M ∈C    there is a matrix N ∈C   with the property A-1 M-1 A = N. i.e., the spread          
(C*) – 1  is isomorphic to C * . 
 
If M ∈C ,  M ≠ 0 has C.P. [abcd] then d ≠ 0 and the C.P. of M-1 is [ d-1c, d-1b, d-1a, d-1]. 
 
It may be seen that C * and (C*) – 1  have the same C.P. structure. Further a close examination of the matrices of C 
reveals that M42, M47 are the only matrices with C.P.[ 2211], [1221] respectively; M31, M32 are the only two matrices  in 
C   with C.P. [2002] and M66, M67 are the only two matrices in C   with C.P.[0012]. If 𝜇 is a collineation of 𝜋 flipping 
the i.ps. 0, 81 and fixing the i.p.1 then 𝜇 must map the i.p. 42 onto the i.p. 47 while mapping the set of i.ps. {31, 32} 
onto the set of i.ps. {66, 67}, besides mapping the set of i.ps. S = {3, 5, 7, 9} among themselves. The matrix A of 𝜇 
belongs to the following sets: 

E1 = Z(M3) ∩ T(M42 
-1, M47) 

E2 = T(M3, M9) ∩ T(M42 
-1, M47) 

E3 = T(M3, M7) ∩ T(M42 
-1, M47) 

E4 = T(M3, M5) ∩ T(M42 
-1, M47) 

 
A simple computation shows that the sets E1 and E2 are empty. Now concentrating on the action of 𝜇 on the i.p. 31 the 
mapping 𝜇 either maps the i.p. 31 onto the i.p. 66 or onto the i.p. 67. Under these circumstances the matrix A of 𝜇 
belongs to the following sets: 

E3∩ T(M31 
-1, M66),  E3∩ T(M31 

-1, M67),  E4∩ T(M31 
-1, M66),  E4∩ T(M31 

-1, M67) 
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On computing we find all the above sets are empty. This shows that no collineation of 𝜋 is of the form �0 𝐴

𝐴 0�.  That is 
no collineation of 𝜋 flips the i.ps. 0, 81 and fixes the i.p. 1. Hence the lemma. 
 
We now concentrate on the existence or otherwise of the collineations of 𝜋 which fix the i.p. 0, 81 and move the i.p. 1 
using the following lemma 
 
Lemma 3.5: 

(a) No collineation of 𝜋 fixes the i.ps. 0, 81 and maps the i.p.1 onto the i.p.21 
(b) No collineation of 𝜋 flips the i.ps. 0, 81 and maps the i.p.1 onto the i.p.21 
(c) No collineation of 𝜋 fixes the i.ps. 0, 81 and maps the i.p.1 onto the i.p. k where k ∈ {41, 61} 

 
Proof: If 𝜂 is a collineation fixing the i.ps. 0, 81 and maps the i.p.1 onto the i.p.k then 𝜂  is of the form �𝐵 0

0 𝐴�,          
A, B ∊ GL(4,3), B = A𝑀𝑘

−1 such that for each matrix M ∊C   there is a matrix N ∊C   satisfying 𝑁 = 𝑀𝑘𝐴−1𝑀𝐴       
i.e., 𝐴−1𝑀𝐴= 𝑀𝑘

−1𝑁. From this it follows that if 𝜂  is a collineation then C    and 𝑀𝑘
−1C   are conjugate. 

 
Let k = 21 and C   = 𝑀21

−1C  = {Ni | Ni =  𝑀21
−1 Mi, M ∊C , 1≤ i ≤ 80}. Some spot checks show that there are 13 

matrices Ni, 1≤ i ≤ 10 , i= 14, 19, 41 of  C    with C.P. [0202], where as the spread set C    has only 12 matrices            
Mi 71≤ i ≤ 80 and i =64, 69. Thus the spread set C    and C'‘ cannot be conjugate. From this the truth of the part (a) of 
the lemma follows. 
 
If 𝜇 is a collineation which flips the i.ps.0, 81 and maps the i.p. 1 onto the i.p. 21 then 𝜇 is of the form �0 𝐴

𝐵 0�,        
A,B ∊ GL(4,3), B = A𝑀21

−1 such that for each nonzero  matrix M ∊C   there is a matrix N ∊C  satisfying                    

M21 A-1 M-1 A = N i.e.,  A-1 M-1 A = 𝑀21
−1𝑁. From  this it follows that � 

•

�
−1

is conjugate to  𝑀21
−1

•

. It is already 

observed (by the proof of lemma 1) that 
•

and �
•

�
−1

 have the same C.P. structure. It now follows that 

�
•

�
−1

and  𝑀21
−1

•

cannot be conjugate on comparing the number of matrices with C.P.[0201] in both the sets as in 

the proof of part(a). Thus no collineation of 𝜋 flips the i.ps. 0, 81 and maps the i.p. 1 onto the i.p. 21. 
 
Suppose  𝜂2 is a collineation fixing the i.p. 0, 81 and mapping the i.p. 1 onto i.p. 41. We have a collineation               
𝜏 =  𝜃3𝛽−1 which flips the i.p. 0, 81 and maps the i.p. 21 onto the i.p.41. Now 𝜇𝜏−1 is a collineation flipping the i.ps. 
0, 81 and mapping the i.p. 1 onto the i.p. 21 – a contradiction to part (b) of the lemma. This shows that no collineation 
of  𝜋 fixes the i.p. 0, 81 and maps the i.p. 1 onto the i.p. 41. This proves the lemma. 
 
If 𝜂3 is a collineation fixing the i.ps. 0, 81 and mapping the i.p. 1 onto the i.p. 61 then  𝜃𝜇−1 is a collineation which 
flips the i.ps. 0, 81 and fixes the i.p. 1 – a contradiction to lemma 1.from this the other part of part (a) of the lemma 
follows. Hence the lemma. We now compute the autotopism group G0,81 of  𝜋. 
 
We compute the autotopism group G0,81 of 𝜋 
 
Theorem 3.6: The autotopism group G0,81 of 𝜋 is given by G0,81 = <𝛼, 𝛽, 𝛿2, 𝛿3>  It is of order 3200 and divides the set 
of i.ps. into six orbits Oi ’, 1 ≤ i ≤ 6 of lengths 1, 1, 20, 20, 20, 20. 
 
Proof: The collineation group H1 = <𝛼, 𝛽>  is a subgroup of G0,81 and it is transitive on O3’ ={ i│1 ≤ i ≤ 2 0}  
 
In view of lemma 3.5 no collineation of 𝜋 moves the i.p. 1 onto the i.p. k, k ∈ {21, 41, 61} while fixing the i.ps. 0, 81. 
From this it follows that no collineation of  G0,81 maps the i.p.1 onto an i.p. k where k ∈  ⋃ 𝑶𝒊

′6
𝑖=1 .  

Thus G0,81  is transitive on O3’whose length is 20. A coset decomposition of G0,81  is given by  
G0,81  = ⋃ 𝐺0,81,1

20
𝑖=1 𝜉𝑖 where 𝜉𝑖 ∈ H1 

         = < G0,81,1 , H1> = <𝛼, 𝛽, 𝛿2, 𝛿3> 
 

     and �𝐺0,81� = |𝐎′𝟑|�𝐺0,81,1� = 20 x 160 = 3200 
 
Hence the theorem 
 
The following lemma gives the order of the collineation group G’ 
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Lemma 3.7:  

(a) G0 = G81 = G0,81 
(b) The group G’ of all collineations which fix the i.ps. 0, 81 or flip them is given by  G’ = < G0,81, 𝜃> 

  
It is of order 6400 and it divides the set of i.ps. into three orbits Oi, 1 ≤ i ≤ 3 of lengths 2, 2, 40  

whereO1=O1
′∪O2′,    O2 = O3∪O6′,O3 = O4 ′ ∪O5′ 

 
Proof:  The first part of the lemma follows by a result of Foulser [9, pp.390] since 𝜋 is a 𝜆- plane with proper kern. 
Thus no collineation of 𝜋 fixes the i.p.0 (81) and moves the i.p. 81(0). Therefore every collineation of 𝜋  that fixes the 
i.p. 0 also fixes the i.p. 81. The first part of lemma now follows. 
 
The collineation group < G0,81, 𝜃 > divides the set of i.ps. of 𝜋 into three orbits O  i,1≤ i ≤ 3 of lengths 2,40,40 where    
O1 =O1

′∪O2′, O2 = O3∪O6′, O3 = O4 ′ ∪O5′. Suppose𝜇 is a coolineation flipping the i.ps 0, 81 and moving the i.p. 1 onto 
the i.p. k of O3. 
 
If k ∈O4 ′then by transitivity of G0,81 on O4 ′there exists a collineation 𝜏∊ G0,81  mapping the i.p. k onto the i.p. 21. Then 
the collineation  𝜇 𝜏 flips the i.ps. 0 and 81 and maps the i.p. 1 onto i.p. 21 – a contradiction. 
 
If k∊O5′ then by transitivity of G0,81 on O5′ there exists a collineation 𝜏∊ G0,81  mapping the i.p. k onto the i.p. k onto the  
i.p. 41. Then the collineation  𝜇𝜏𝛽𝜃−3 𝜖 G0,81 mapping  the i.p. 1 onto i.p. 21 – a contradiction. 
 
From the above discussion we conclude that no collineation of 𝜋 maps i.p. of O2  ontoO3, while flipping the i.ps. 0, 81. 
 
Thus any flipping collineation belongs to G0,81 𝜃. Therefore the group G’ of all collineations that fix the i.p. 0, 81 or 
flips them is given by 

G’ = G0,81∪G0,81𝜃 
     = <G0,81𝜃 > 

 
Since G’   is transitive on O1whose length is two, 

|G’| = |O1| |G0| 
      = |O1| |G81| = |O1| |G0,81| = 2 x 3200 = 6400 

Hence the theorem. 
 
4. THE TRANSLATION COMPLEMENT OF 𝝅 
 
This section is devoted to determine the translation complement of the translation plane 𝜋. It is shown that there are no 
collineations of 𝜋 other than 𝐺 ′i.e., the translation complement G is 𝐺 ′. To the end it is shown that the translation planes 
𝜋9 and 𝜋 are not isomorphic even though both the planes are generalized andre planes with translation complements of 
the same order by comparing their kernels and the action of the translation complements on the sets of i.ps. of the 
planes. 
 
Lemma 4.1: No collineation of 𝝅 

(i) Maps the i.p.1(21) onto the i.p. 81 and the i.p. 81 onto the i.p.(0) 
(ii) Maps the i.p.1(21) onto the i.p 0 and the i.p. 0 onto the i.p.81 
(iii) Maps the i.p. k onto the i.p. 81(0) and the i.p. 81(0) onto the i.p.0(81) where k≠ 0,81. 

 
Proof: The first two parts of the lemma follows from lemma 2.1, the property (2.1) and the following observations:  

M1 + M21 = (1001, 1101, 1102, 1222) ∉C10 
(M1

-1 + M21
-1) -1 = (0210, 1000, 1201, 0121) ∉C10 

 
Assume that 𝜇 is a collineation of 𝜋 mapping the i.p. k onto the i.p. 81 and the i.p. 81 onto the i.p. 0, k ≠ 0, 81. If k∈O2  
then there exists a collineation 𝜏 flipping the i.ps. 0, 81 and mapping the i.p. 1 onto the i.p. k. Hence 𝜏𝜇𝜏−1 is a collineation 
of 𝜋 which maps the i.p. 1 onto the i.p. 0 and the i.p. 0 onto the i.p. 81 – a contradiction to a part of this lemma. If k ∈O3  
then there exists a collineation 𝜏 ∈ G0,81𝜃mapping the i.p. 21 onto the i.p. k. now 𝜏𝜇𝜏−1 is a collineation of 𝜋 mapping the 
i.p. 21 onto the i.p. 0 and the i.p. 0 onto the i.p. 81 – a contradiction to a part of this lemma. The truth of the last part of the 
lemma now follows. 
 
Lemma4.2: None of the following 3- Spread sets of  𝜋: 

Γ𝑖,𝑗,𝑘i = 1, j ∈ {6, 42, 47}, k ≠ i, k ≠ j is conjugate to C   where 
Γ𝑖,𝑗,𝑘 = {Nl = [(M l - M i) -1 – (M j - M i) -1] [(M k – Mi) -1] -1 | Ml∈C10, 1≤l≤ 80} 
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Proof: we have already observed that C   has a property (2.1). if C   and Γ𝑖,𝑗,𝑘 are conjugate then Γ𝑖,𝑗,𝑘 must also have 
the property (2.1) i.e., for every N∈ Γ𝑖,𝑗,𝑘 we must have – N∈  Γ𝑖,𝑗,𝑘. It may be seen that  Γ𝑖,𝑗,𝑘 has the property (2.1) if 
and only if Γ𝑖,𝑗 has the property (2.1), where  
Γ𝑖,𝑗 = {Nl = (M l  - M i) -1 – (M j  - M i) -1 |  Ml∈C, {1≤l≤ 80}. Thus it is enough to consider Γ𝑖,𝑗 to discuss about the 
property (2.1). 
 
If i = 1, j = 6 then N41 = (1101, 1210, 0121, 1112) ∈ Γ1,6. Assume that – N41∈ Γ1,6. Now we look for the matrix M in C 
for which – N41∈ Γ1,6 .A simple computation shows M = (1012, 0120, 1002, 0110) and we notice M ∈C.  This shows 
that Γ1,6 does not possess the property (2.1) and there by Γ1,6,𝑘 , k ≠ 1,6 does not posses the property (2.1) and hence 
Γ1,6,𝑘  is not conjugate to C. 
 
If i =1, j = 42 the N21 = (1120, 2100, 2112, 0210) ∈ Γ1,42 ⇒ – N21∈ Γ1,42 ⇒ M= (0101, 0120, 1002, 0110) ∈C- a 
contradiction. Similarly we conclude Γ1,42,𝑘 is not conjugate toC . 
 
If i = 1, j = 47 then N21 = (2120, 2200, 2122, 0211) ∈ Γ1,47. – N21∈ Γ1,47 ⇒ M = (1121, 0001, 0221, 1100) ∈C– a 
contradiction. Thus  Γ1,47,𝑘 is not conjugate to C . 
 
If i = 42. j = 1 (6) (47) then N21 = (1001, 1101, 1102, 1222) ∈ Γ42,1.  
N21 = (2222, 2020, 0121, 0021) ∈ Γ42,6,  N21 = (2001, 1201, 1112, 1210) ∈ Γ42,47 respectively. 

– N21∈ Γ41,1, ⇒ M = (0102, 0122, 1000, 0110) ∈C10 - a contradiction. 
– N21∈ Γ41,6 ⇒ M= (2012, 1020, 2220, 0200) ∈C10  - a contradiction. 
– N21∈ Γ42,47 ⇒ M= (0222, 0010, 2011, 0221) ∈C10 - a contradiction. 

 
From the above, the spread sets, Γ42,1,𝑘,Γ42,6,𝑘 , Γ42,47,𝑘 are not conjugate to C10  as these spread sets do not have the 
property (2.1). Hence the lemma. 
 
Corollary 4.3:  

(a) No collineation of 𝜋 maps the i.p. 81 onto the i.p. 1 and the i.p. 0 onto the i.p. k where k∈{6, 42, 47}. 
(b) No collineation of 𝜋 maps the i.p. 81 onto the i.p. 42 and the i.p. 0 onto the i.p.k, k∈{1, 6, 47}. 

 
Proof: By a result of Maduram on the Matrix representative sets associated with translation planes there exists a 
collineation mapping i.ps. 0, 81, 1 onto the i.ps. i, j, k respectively if and only if the matrix representative sets with these 
fundamental subspaces are conjugate i.e., C  and Γ𝑖,𝑗,𝑘 are conjugate. The truth of the corollaries follow from the above 
lemma. Hence the result.  
 
Lemma 4.4:  

(a) No collineation of 𝜋moves the i.p. 81 onto the i.p.1 
(b) No collineation of 𝜋 moves the i.p. 81 onto the i.p.42 

       (c)   No collineation of 𝜋moves the i.ps. 0, 81 outside the orbit O1 . 
 
Proof: By the actions of  𝛿2, 𝛿3 we have already noticed that they fix i.ps. 1, 6, 42, 47 besides the i.ps. 0, 81 and moves 
all the remaining i.ps. By lemma 2.2 the i.p. 81 may be mapped onto one of the i.ps. i of the set S” = {1, 6, 42, 47} and  
the i.p. 0 onto one of the i.ps. j of S”, j ≠ i. This  means, if there is a collineation mapping the i.p. 1, then that collineation 
must map the i.p. 0 onto the i.p. k, k ∈ {6, 42, 47}. Further if there is a collineation which maps the i.p. 81 onto the i.p. 42 
then this collineation must map the i.p. 0 onto the i.p. k, k ∈ {1, 6, 47}. By the corollary 7 no collineation of 𝜋 maps the 
i.p. 81 onto the i.p. 1 and the i.p. 0 onto the i.p. k, k {6, 42, 47}.From this it may be concluded that no collineation of 𝜋 
maps the i.p. 81 onto the i.p. 1. Also no collineation of 𝜋 maps the i.p. 81 onto the i.p. 42 and the i.p. 0 onto the i.p. k,       
k ∈ {1, 6, 47}. From this it may be concluded that no collineation of 𝜋 maps the i.p. 81 onto the i.p. 42. This proves parts 
(a) and (b) of the lemma. 
 
If 𝜇 is a collineation mapping the i.p. 81 onto the i.p. 6 then the i.p. 0 must be mapped onto one of the i.ps. of the set      
{1, 42, 47}. Now  𝛼−5𝜇𝛼5is a collineation which moves the i.p. 81 onto the i.p. 1 – a contradiction. 
 
If 𝜇 is a collineation of 𝜋 mapping the i.p. 81 onto the i.p. 47 then the i.p. 0 must be mapped onto one of the i.ps. of the 
set {1, 6. 42}. Now  the collineation 𝛼−5𝜇𝛼5 maps the i.p. 81 onto the i.p. 42- a contradiction. 
 
By part (a) of lemma 3.7 no collineation of 𝜋 fixes one of the i.ps. ofO1  and moves the other i.e., every collineation of 𝜋 
fixes one of the i.ps. ofO1  also fixes the other. By part (iii) of lemma 4.1 no collineation of 𝜋 maps the i.p. k onto one of 
the i.ps. ofO1  via the other i.p. of O1 , k≠ 0.81. Assume that the i.p. 0 and 81 move to the i.ps. outsideO1 .Suppose  that  𝜇 
is a collineation mapping the i.p. 81 onto the i.p. k. If k ∈O  2 
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Then there is a collineation 𝜏 ∈ G0,81 𝜃  mapping the i.p. k onto the i.p. 1. Now the collineation 𝜇 𝜏 maps the i.p. 81 onto 
the i.p. 1- a contradiction to part(a) of the lemma. If k ∈O  3 then there is a collineation. 𝜏 ∈ G0,81 𝜃 mapping the i.p. k 
onto the i.p. 42. Now the collineation  𝜇 𝜏 maps the i.p. 81 onto the i.p. 42 – a contradiction to part (b) of the lemma. 
From this the truth of the third part of the lemma follows 
 
Theorem 4.5: The translation complement G of the translation plane 𝜋 is given by G’ = < G 0,81, 𝜃> and it is of order 
6400. G divides the set of i.ps. of 𝜋 into 3 orbits Oi, 1 ≤ i ≤ 3 of lengths 2, 40, 40 where O1= { 0,81}, O2={i│ 1 ≤ i   ≤ 2 
0 , 61 ≤ i≤ 8 0},O3  ={i│21 ≤ i≤ 6 0} 
 
Proof: In view of lemma 3.7 and lemma 4.4(c), every collineation of 𝜋 either fixes both the i.ps. 0, 81 or flips them. 
From this it follows that G = G’. The rest of the theorem is evident 
 
Theorem 4.6: The translation planes 𝜋 is not isomorphic to the plane already reported. [19]. 
 
Proof: Both the translation planes 𝜋 and the plane reported in [19] are generalized Andre planes with the order of the 
translation complement 6400. These two planes are distinct in view of the orbit structure of the set of i.ps. under the 
translation complement  40, 40 and 2, 80. Moreover these two planes are not isomorphic since the kernel of the plane 
reported is trivial and the kernel of 𝜋 is isomorphic to GF(32). Hence the result. 
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