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ABSTRACT 

In this paper, we discuss the notion of max-fuzzy soft N-subgroups by using Molodtsov’s definition of soft sets and 
investigate their related properties with respect to α-inclusion of soft sets. 
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SECTION-1: INTRODUCTION 
 
In 1999, Molodtsov’s [10] proposed an approach for modeling, vagueness and uncertainty, called soft set theory. Since 
its inception, works on soft set theory have been progressing rapidly with a wide-range applications especially in the 
mean of algebraic structures as in [1-14]. The structures of soft sets, operations of soft sets and some related concepts 
have been studied by [10-13]. Atagun and Sezgin [3] defined soft N- subgroups and soft N-ideals of an N-group. They 
studied their properties with respect to soft set operations in more detail. In this paper,  the notion of max-  fuzzy soft 
N-subgroups by using Molodtsov’s definition of soft sets are discussed  and investigate their related properties with 
respect to α-inclusion of soft sets. 
 
SECTION-2: PRELIMINARIES 
 
This section contains some basic definition and preliminary results which will be needed in the sequal.In what follows 
let G and S denote a group and max-norm respectively unless otherwise specified.  
 
Definition 2.1: By a near ring, we shall mean an algebraic system (N, +, •), where 

(i) (N,+)  forms a group (not necessarily abelian) 
(ii) (N,•) forms a semi group and  
(iii) (a+b) c = ac + bc for all  a, b ∈ N. 

 
Throughout this paper, N will always denote a right near ring whose zero element in ON. A subgroup M or N write N is 
contained in M is called a sub near ring of N. For a near ring N, the zero symmetric part of N denoted by N0 is defined 
by N0 = {n ∈ N / nN0 = ON} 
 
Definition 2.2: Let (G, +) be a group and A: N×G→G , (n, g) → ng, (G, A) is called an N-group if for all x, y ∈ N, for 
all g ∈ G, 

(i) x(yg) = (xy)g and 
(ii) (x+y)g = xg +yg. It is denoted by NG. 
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Clearly, N itself is an N-group by natural operation. A subgroup H of G with NH contained in H is said to be an          
N-subgroup of G. Let N be a near-ring and G and ψ two N-groups. Then f: G→ ψ is called N-homomorphism if for all 
g, H ∈ G, for all n ∈ N. 

(i) f(g+H) = f(g) + f(H) and 
(ii) f(ng) = nf(g). For all undefined concepts and notions, we refer [17]. 

 
From now on, U refers to an initial universe, E is a set of parameters, 2U is the power set of U and A, B, C is subset of 
E. 
 
Definition 2.3: Let X be a set. Then a mapping µ: X→ [0, 1] is called fuzzy subset of X. 
 
Definition 2.4: Let U be a universal set, E set of parameters and A ⊂ E. Then a pair (δ, A) is called soft set over U, 
where δ is a mapping from A to 2U, the power set of U. 
 
Example: Let X = {c1, c2, c3} be the set of three cars and E= {costly (e1), metallic colour (e2), cheap (e3)} be the set of 
parameters, where A = {e1, e2} is subset of E. Then 

(δ, A) = {𝛿(e1) = {c1, c2, c3}, δ(e2) = {c1, c2}} is crisp soft set over X. 
 
Definition 2.5: Let U be a universal set, E set of parameters and A is subset of E. Let δ(X) denotes the set of all fuzzy 
subsets of U. Then a pair (δ, A) is called soft set over U, where F is a mapping from A to δ(U). 
 
Example: Let U = {c1, c2, c3} be the set of three cars and E= {costly (e1), metallic colour (e2), cheap (e3)} be the set of 
parameters, where A = {e1, e2} ⊂ E. Then 

(δ, A) = {δ(e1) = {c1/ 0.5, c2 /0.6, c3/0.2}, δ(e2) ={c1/0.4, c2/0.5, c3/ 0.7}} is the fuzzy soft set over U denoted by δA. 
 
Definition 2.6: Let δA be a fuzzy soft set over U and α be a subset of U. Then upper α- inclusion of δA denoted by  

δA
+α ={ x∈ A / δ(x)  ≥ α} similarly 

δA
-α ={ x ∈A / δ(x)  ≤ α} is called  lower  α-inclusion of δA. 

 

Definition 2.7: A triangular conorm (t-conorm) is a mapping max: [0, 1] × [0, 1] → [0, 1] that satisfies the following   
conditions: 
(S1) max (x, 0) = x, 
(S2) max(x, y) = max(y, x), 
(S3) max(x, max(y, z)) = max(max(x, y), z), 
(S4) max(x, y) ≤  max(x, z) whenever y ≤ z, for all x, y, z ∈ [0, 1]. 
Replacing 0 by 1 in condition max, we obtain the concept of t-norm min. 
 
Lemma 2.8: Let ‘min’ be a t- norm. Then t- co norm ‘max’ can be defined as max(x, y) = 1- min(1-x, 1-y). 
 
Proof: straight forward 
 
Definition 2.9: Let δA and ΔB be fuzzy soft sets over the common universe U and ψ: A → B a function. Then fuzzy soft 
image of δA under ψ over U denoted by ψ(δA) is a set-valued function, when ψ(δA): B→ 2U defined by 
 

ψ(δA)(b) =   max{ δ(a) / a∈A and ψ(a) = b }, if ψ-1(b) = Φ 
                    Φ                            otherwise                           for all b∈ B. 

 
The fuzzy soft pre image of ΔB under ψ over U, denoted by ψ-1(GB) is a set valued function where ψ-1(GB): A→ 2U 
defined by ψ-1(ΔB)(b) = G(ψ(a)) for all a∈A. Then fuzzy soft anti image of δA under ∆ over U denoted by ψ*(δA) is a set 
valued function, where  
  

 ψ*(δ ) =   min {δ(a) / a ∈ A  and ψ(a) = b}, if ψ-1(b) =  Φ    
                 Φ            otherwise                                              for all b∈ B. 

 
Definition 2.10: Let H be an N- subgroup of G and δH be a fuzzy soft set over G. If for all x, y∈H and  n ∈ N, 

(i) δH(x-y) ≥  min{δH(x), δH(y)} and 
(ii) δH(nx) ≥ δH(x), then the fuzzy soft set FH is called a  fuzzy soft N-subgroup of G. 

 
Definition 2.11: Let H be an N- subgroup of G and FH be a fuzzy soft set over G. If for all x, y∈H and n ∈ N, 

(i) δH(x-y) ≤  max{δH(x), δH(y)} and 
(ii) δH(nx) ≤  δH(x), then the fuzzy soft set δH is called  max - fuzzy soft N-subgroup of G. 

It is denoted by δH⌂N G 
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Example: Consider N = {0, 1, 2, 3} be a near-ring with operations + and •  
 

+ 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 
  

• 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 1 2 

3 0 3 2 1 

 
Let G = N, H = {0, 2}⌂N G and FH be a fuzzy soft set over G, where δ: H→ 2G is a set valued function defined by        
δ(x) = {0} ∪{y ∊ G / 3x=y} for x ∈ H. Then δ(0) = {0} and δ(2) = {0,2}. Therefore δH ⌂N G.   If we define a fuzzy soft 
set ΔH over G by Δ(x) = {y ∈ G / 3x = y} for all x∈ H. Then Δ(0) = {0} and Δ(2) = {2}. since Δ(2-2) = Δ(0) not in 
Δ(2). ΔH is not a max- fuzzy soft N-subgroup of G. 
 
Definition 2.12: The relative complement of the fuzzy soft set δA over G is denoted by δA

r, where δA
r: A → 2 U is a 

mapping given as δA
r(x) = G / δA(x), for all x ∈ A. 

 
SECTION-3: Properties of max- fuzzy soft N-subgroup 
 
Proposition 3.1: Let δH be a fuzzy soft set over G and α be a subset of G. If δH is max- fuzzy soft N-subgroup of G, 
then lower α-inclusion of δH is an N-subgroup of G. 
 
Proof: since δH is max- fuzzy soft N-subgroup of G. Assume x, y ∈ H   
 
Let δH

-α and n ∈N, then δH(x) ≤ α and δH(y) ≤  α. We need to show that x-y∊ δH
-α and n ∊ δH

-α. Since δA is max- fuzzy 
soft N-subgroup of G, it follows that δH(x-y) ≤ max {δH(x), δH(y)} ≤ max  {α, α} ≤ α and δH(nx) ≤  δH(x) ≤ α which 
completes the proof. 
 
Proposition 3.2: Let δH be a fuzzy soft set over G and α be a subset of G. If δH is fuzzy soft N-subgroup of G, then 
upper α-inclusion of δH is an N-subgroup of G. 
 
Proof: since δH is fuzzy soft N-subgroup of G.  
 
Assume x, y ∊ δH

+α and n ∊ N, then δH(x) ≥ α and δH(y) ≥ α. We need to show that x-y ∊ δH
+α and n ∊ δH

+α. Since δH is  
fuzzy soft N-subgroup of G, it follows that δH(x-y) ≥ min {δH(x), δH(y)} ≥ min{α,α} ≥ α and δH(nx) ≥ δH(x) ≥ α which 
completes the proof. 
 
Proposition 3.3: Let δH be a fuzzy soft set over G. Then δH is max- fuzzy soft N- subgroup of G if δH

r is min-fuzzy soft 
N-subgroup of G. 
 
Proof: Let δH be a max- fuzzy soft N-subgroup of G, then, for all x, y ∊ H and n ∈ N. 

δH
r(x-y) = G / δH(x-y) ≥ (G / max{δH(x), δH(y)}) = min{(G/ δH(x)), (G /δH(y))}= min{δH

r(x), δH
r(y)} 

δH
r(nx) = G / δH(nx) ≥ (G /δH(x)) = δH

r(x) 
δH

r is fuzzy soft N-subgroup of G.             
 
Proposition 3.4: Let δH: X→X1 be a soft homomorphism of N-subgroups. If δH

f is max- fuzzy soft N-subgroups of X, 
then δH is max- fuzzy soft N-subgroup of X1. 
 
Proof: Suppose δH is max- fuzzy soft N-subgroups of X1, then 

(i) Let x1, y1 ∈ X1, there exists x, y ∊ X such that f(x) = x1 and f(y) = y1. We have 
δH(x1-y1) = δH(f(x)- f(y) ≤ max {δH(x), δH(y)} = max {δH

f(x), δH
f(y)} and  
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(ii) δH(nx1) = δH(nf(x)) ≤ δH(f(x)) = δH

f(x). 
Therefore δH is max- fuzzy soft N-subgroups of X1. 

 
Proposition 3.5: Let δH be max- fuzzy soft N-subgroups of X and δH* be a fuzzy soft in X given by                       
δH*(x) = δH(x) + 1- δH(1) for all x ∊ X. Then FH* is max- fuzzy soft N-subgroups of X and δH ⊂ δH*. 
 
Proof: Since δH is max- fuzzy soft N-subgroups of X and δH*(x) = δH(x) +1-δH(1) for all x∈X. For any x,y ∈ X,we have 
δH*(1) = δH(1) +1- δH(1) = 1 > δH*(x) and  

(i) For all x, y ∈ X, we have 
δH*(x-y)  = δH(x-y) + 1- δH(1) 

≤ max{δH(x), δH(y)} +1 –δH(1) 
= max {δH(x)+1-δH(1), δH(y) +1- δH(1)} 
= max {δH*(x), δH*(y)} 
 

(ii) δH*(nx)  = δH(nx) +1- δH(1)  
≤ δH(x) +1- δH(1) = δH*(x) 
 

Therefore δH* is max- fuzzy soft N-subgroup of X and δH is subset of δH*. 
 

Proposition 3.6: Let δH and δΔ be fuzzy soft sets over G. where H and Δ are N-subgroups of G and ψ: H→ Δ is an      
N-homomorphism. If δH is max - fuzzy N-subgroups of G, then so is ψ(δH). 

 
Proof: Let α1, α2 ∈ Δ such ψ is surjective, there exists a1, a2 ∈H such that ψ(a1) = α1 and ψ(a2) = α2. Thus 

Ψ(δH) (x)  = max {δ(H) / H ∈ H, ψ(H) = α1-α2} 
                 = max {δ(H) / H ∈ H, H = ψ -1( α1-α2)} 
                 = max {δ(H) / H ∈H, H = ψ -1(ψ (α1-α2))= A1-A2} 
                 = max {δ(a1-a2) / α1,α2 ∈ Δ, ψ (Hi) = αi, i= 1, 2} 
                 = max {(max {δ(a1) / α1 ∈ Δ, ψ (H1) = α1}), (max{δ(a2) / α2 ∈ Δ, ψ (H2) = α2})} 
                 = max {ψ (δH) (a1), ψ (δH) (a2)} 
 

Now let n∈N and α ∈ Δ. Since ψ is surjective, there exists H∈H such that ψ (H) = 0 
ψ (δH) (nα)  = max {δ(H) / H ∊ H, ψ (H) = nα} 
                   = max {δ(H) / H ∊ H,  H = ψ -1(nα)} 
                   = max {δ(H) / H ∊ H, H = ψ -1( n ψ (H)} 
                   = max {δ(H) / H ∊ H, H = ψ -1(ψ (nH)= nH} 
                   = max {δ(nH) / H ∊ H, H = ψ -1(H)= α} 
                   = max {δ(H) / H ∊ H, H = ψ -1(H)= α} 
                   = ψ (δH) (α) 

 
ψ (δH) is max - fuzzy soft N-subgroup of G. 

 
Proposition 3.7: Let δH: X→Y be a soft homomorphism of N-subgroups. If δH is max - fuzzy soft N-subgroups of Y, 
then δH

f is max - fuzzy soft N-subgroups of X. 
 
Proof: Suppose δH is max - fuzzy soft N-subgroups of Y, then  
For all x, y ∈ X, we have 

        δH
f(x-y) = δH(f(x)- f(y) ≤ max {δH(f(x)), δH(f(y))}= max {δH

f(x), δH
f(y)} and 

(i) δH
f(nx) = δH(nf(x))≤ δH(f(x)) = δH

f(x). 
 Therefore δH

f is max- fuzzy soft N-subgroups of Y. 
 
Proposition 3.8: Let δH and δΔ be fuzzy soft sets over G, where H and Δ are N-subgroups of G and ψ be an                  
N-homomorphism from H to Δ. If δΔ is max - fuzzy soft N- subgroups of G, then so is ψ -1(δΔ). 
 
Proof: Let a1, a2 ∈ H, then 

ψ -1(δΔ)(a1-a2) = δ(ψ (a1-a2)) 
 ≤ max{δ(ψ (a1), ψ (a2))} 
 ≤ max{ψ -1(δΔ)(a1), ψ -1(δΔ)(a2)} 

 
Now let n ∈ N and H ∈ H, then 

ψ -1(δΔ)(nH) = δ(ψ (nH)) = δ(n ψ (H)) = G(ψ (H)) = ψ -1(δΔ)(H) 
 
Therefore ψ -1(δΔ) is max - fuzzy soft N-subgroups of G.  
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Proposition 3.9: A fuzzy soft subset δH of G is min- fuzzy soft N-subgroups of G. if and only if δH

c is  max - fuzzy soft 
N-subgroups of G.  
 
Proof: Let δH be a min- fuzzy soft N-subgroups of G. For all x, y ∈ G, we have 

(i)  δH
c(x-y) =1 - δH(x-y) 

 ≤ 1- min(δH(x), δH(y)) 
 = 1- min(1- δH

c(x),  1- δH
c(y)) 

 = max (δH
c(x), δH

c(y) ) 
 

(ii) δH
c(nx) = 1- δH(nx) 

    ≤ 1- δH(x) = δH
c(x) 

δH
c is max - fuzzy soft N-subgroups of G. 

 
Proposition 3.10: If δH and δΔ be two max -fuzzy soft N-subgroups of G, then δH ∪ δΔ also max -fuzzy soft N-subgroup 
of G 
 
Proof: Since H and Δ are N-subgroup of G, then H∩Δ is an N-subgroup of G.  
 
Let P = δH ∪ δΔ. , where P(x) = δH(x) ∪ δΔ(x) for all x ∈ H∩Δ not equal to  empty. Then for all x, y ∈ H∩Δ and n ∈ N, 

P(x-y) = δH(x-y) ∪ δΔ(x-y) 
 ≤ max {max {δH(x), δH(y)}, max {δΔ(x), δΔ(y)}} 
 = max {max {δH(x), δΔ(x)}, max {δH(y), δΔ(y)}} 
 = max {P(x), P(y)} 

 
P(nx)  = δH(nx) ∪δΔ(nx) 

≤ max {δH(x), δΔ(x)} 
= P(x) 

 
Therefore δH ∪ δΔ also max -fuzzy soft N-subgroup of G. 
 
Definition 3.1: A max -fuzzy soft N-subgroup FH of G is said to be complete if it is normal and there exists x ∈X such 
that δH(z) = 0. 
 
Proposition 3.11: Let δH be max -fuzzy soft N-subgroup of G and let w be a fixed element of G such that                
δH(1) = δH(w). Define a fuzzy soft set δH* in G by δH*(x) = δH(x) – δH(w) / δH(1) – δH(w) for all x∊G. Then δH* is 
complete max -fuzzy soft N-subgroup of G. 
 
Proof: For any x, y ∈ G, we have  

δH*(x-y) = δH(x-y) – δH(w) / δH(1)- δH(w) 
 ≤  max {δH(x), δH(y)} – δH(w)  / δH(1)- δH(w) 
 = max {{δH(x), δH(y)} – δH(w)  / δH(1)- δH(w),  {δH(x), δH(y)} – δH(w)  / δH(1)- δH(w)} 
 = max { δH*(x), δH*(y)} 

 
δH*(nx) =  δH(nx) – δH(w) / δH(1)- δH(w) 

≤ δH(x) – δH(w)  / δH(1)- δH(w) 
= δH*(x) Therefore δH* is an complete max -fuzzy soft N-subgroup of G. 
 

CONCLUSION 
 
This paper summarized the basic concepts of fuzzy soft sets. By using these concepts, we studied the algebraic 
properties of max- fuzzy soft N-subgroups. This work focused on fuzzy pre-image, fuzzy soft image, fuzzy soft anti-
image.  
 
FUTURE WORK 
 
To extend this work, one could study the properties of min-fuzzy soft N-subgroups in other algebraic structures such as 
rings and fields. 

. 
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