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ABSTRACT 
In this paper, we show that in a (-1,1) ring R, every associator commutes with every element of R, that is ((R,R,R),R)=0 
and (R,R (R,R,R))=0. Using these we prove that a 2- and 3- divisible semiprime (-1, 1) ring R is associative.  
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1. INTRODUCTION 
 
Thedy [1] studied nonassociative rings satisfying the identity ((a, b, c), d) = 0. He proved that a simple nonassociative 
ring with ((a, b, c,), d) = 0 is either associative or commutative. He pointed out that it cannot be extended to prime 
rings. 

 
In this paper, we show that in a (-1,1) ring R, every associator  commutes with every element of R, that is                   
((R, R, R), R) = 0 and (R, R (R, R, R)) = 0. Using these we prove that a 2- and 3- divisible semiprime (-1, 1) ring R is 
associative. At the end of this section we give an example of a (-1, 1) ring which is not associative. 

 
2. PRELIMINARIES  
 
A nonassociative ring is said to be a (-1, 1) ring if it satisfies the following identities:  

A(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y) = 0                                                   (1) 
and         B(x, y, z) = (x, y, z) + (x, z, y) = 0                                                                              (2) 
 
We know that a ring R is semi prime if for any ideal A of R, A2 = 0 implies A = 0.  
 
A ring R is said to be n – divisible  if  nx=0  implies  x=0  for  all  x  in  R and  n  a  natural  number. 
 
Throughout this section R denotes a 2- and 3- divisible (-1, 1) ring.  
 
As a consequence of (2), we have the right alternative law (y, x, x) = 0.                                                            (3) 
 
In any ring we have the following identities: 

c(w, x, y, z) = (wx, y, z) – (w, xy, z) + (w, x, yz) - w(x, y, z) – (w, x, y)z = 0.                                            (4)  
and        (xy, z) – x(y, z) – (x, z)y – (x, y, z) + (x, z, y) - (z, x, y) = 0.                                                    (5)  
 
By forming C(x, y, y, z) – C(x, z, y, y) + C(x, y, z, y) = 0,  
 
we obtain 2(x, y, yz) = 2(x, y, z)y. This implies that  

      D(x, y, z) = (x, y, yz) – (x, y, z)y = 0.                                                                                         (6) 
 
In C(x, z, y, y) = 0 we make use of (6),  
 
So that E(x, y, z) = (x, y2, z) – (x, y, yz + zy) = 0.                                                       (7) 
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By linearizing (6) (replace y with w + y), we obtain the identity 

F(x, w, y, z) = (x, w, yz) + (x, y, wz) – (x, w, z)y - (x, y, z)w = 0.                                                          (8) 
 
From C(w, x, y, z) – F (w, z, x, y) = 0, it follows that  

G(w, x, y, z) = (wx, y, z) + (w, x, (y, z)) – w(x, y, z) – (w, y, z)x = 0. 
 
In a (-1, 1) ring (5) becomes 

H(x, y, z) = (xy, z) – x(y, z) – (x, z)y - 2(x, y, z) – (z, x, y) = 0, 
 
Because of (2). The combination of (1) and (4) gives 

J(w, x, y, z) = (w, (x, y, z)) – (x, (y, z, w)) + (y, (z, w, x)) – (z,(w, x, y)) = 0. 
 
From J(x, x, x, y) + (x, B(x, y, x)) = 0, it follows that  

2(x, (x, x, y)) = 0.  
 
From this and the fact that (x, y, x) = - (x, x, y) we obtain 

(x, (x, x, y)) = 0 and (x, (x, y, x)) = 0.                                                       (9) 
 
Now J(y, x, y, x) = 0 gives 2(y, (x, y, x)) -2 (x, (y, x, y)) = 0. 
 
Thus (y, (x, y, x)) – (x, (y, x, y)) = 0. 
 
From B(x, x, y) = 0 and B(y, y, x) = 0, we have (y, (x, x, y)) - (x, (y, y, x)) = 0. 
 
Combining this with J(y, x, x, y) = 0 gives 2(y, (x, x, y)) = 0 and therefore  

(y, (x, x, y)) = 0.                                                              (10) 
 
Using the right alternative property of R, identity (10) can be written  

(y, (x, y, x)) = 0.                                         (11) 
 
Now we define U to be the set of all elements u of R which commute with all the elements of R. 
 
That is, U = {u∈R/(u, R) = 0}. 
 
Then C(x, x, u) = 0 gives – 2(x, x, u) = 0. 
 
Hence (x, x, u) = 0 and (x, u, x) = 0 by (2). 
 
Replacing x by x + y in these last two identities give  

(x, y, u) = -(y, x, u)                                                  (12) 
and        (x, u, y) = - (y, u, x), for u∈U.                                                                          (13) 
 
In addition to these identities, we present some more identities involving the element u∈U.  

O = Q(u, x, y) = (u, x, y) – 2(y, x, u)                                                                         (14) 
and        O = R (x, y, u) = 3(x, y, u) – (x, y)u + (x, yu).                                                                        (15) 
 
We know the identity (y, (x, y, x)) = 0, for every x, y, in R holds in R. Using this we prove the following lemma. 
 
3. MAIN RESULTS  
 
Lemma 1: If R is a 2- and 3- divisible (-1, 1) ring, then ((R, R, R), R) = 0. 
 
Proof: Using the right alternative property (11) can be written as  

(y, (x, x, y)) = 0.                                         (16) 
 
By linearizing the identities (11) and (16), we have  

(y, (x, y, z)) = - (y, (z, y, x))                                                    (17) 
and        (y, (x, z, y)) = - (y, (z, x, y)).                                       (18) 
 
From equations (2), (17), (18) and again (2) we get 

(y, (y, z, x)) = - (y, (y, x, z)) = (y, (z, x, y)) = -(y, (x, z, y)) = (y, (x, y, z)).                                                     (19) 
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Community equation (1) with y, we have 

(y, (x, y, z) + (y, z, x) + (z, x, y)) = 0. From (19)  
 
This equation becomes 3(y,(x, y, z)) = 0. Since R is 3- divisible, 

(y, (x, y, z)) = 0.                           (20) 
 
From (20), the identity L=(x, (y, y, z) – 3(y, (x, z, y)) = 0 in [2] becomes (x, (y, y, z)) = 0.  
 
Thus      (R, (y, y, z)) = 0.                                         (21) 
 
By linearizing equation (21), we obtain (w, (x, y, z)) = – (w, (y, x, z)).                                             (22) 
 
Applying equations (2) and (22) repeatedly, we get  

(w, (x, y, z)) = - (w, (y, x, z)) = (w, (y, z, x)) = - (w, (z, y, x)) = (w, (z, x, y)). 
 
Commuting equation (1) with w and applying the above equation, we obtain 3(w, (x, y, z)) = 0. 
 
Since R is 3- divisible, we have (w, (x, y, z)) = 0.                                                    (23) 
 
This completes the proof of the lemma.                                       
 
Lemma 2: If R is a 2 and 3 divisible (-1, 1) ring, then (r, w(x, y, z)) = 0. 
 
Proof: Let r be an arbitrary element of R. By commuting equations (6), (8), (4) with r, and then applying (23) we get 

(r, y(x, z, w) = -(r, w(x, z, y)),                                                    (24) 
(r, y(x, y, z)) = 0                                                                            (25) 

and         (r, w(x, y, z))= –(r, z(w, x, y)).                                                                          (26) 
 
Linearizing equation (25), we have 

(r, w(x, y, z)) = -(r, y(x, w, z)).                                               (27) 
 
Permutating cyclically (w z y x) in (26) and finally applying (24), we get 

(r, w(x. y. z)) = - (r, z(w, x, y)) = (r, y(z, w, x)) = -(r, x(y, z, w)) = (r, w(y, z, x)).                                          (28) 
 
But using (27) and B(x, y, z) = 0, (28) can be written as  

(r, y(z, w, x)) = -(r, w(z, y, x)) = (r, w(z, x, y)).                                               (29) 
 
Combining (28) and (29) we obtain 

(r, w(x, y, z)) = (r, w(y, z, x)) = (r, w(z, x, y)).                                                                        (30) 
 
Multiplying equation A (x, y, z) = 0 by w and commuting with r, and applying (30), then 3(r, w(x, y, z)) = 0. 
 
Since R is 3- divisible, we have (r, w(x, y, z)) = 0.                                                                         (31) 
 
Hence this completes the proof of the lemma.                                     
 
Theorem 1: A 2- and 3-divisible semiprime (-1, 1) ring R is associative. 
 
Proof: If u is an arbitrary associator, from (12) and (2) we have  

(x, y, u) = -(y, x, u) = (y, u, x).                                                (32) 
 
Using (3) and (32) we get  

(u, x, y) = -(u, y, x) = -(y, x, u) = (y, u, x).                                       (33) 
 
From (1) (x, y, u) + (y, u, x) + (u, x, y) = 0.  
 
This implies 3(x, y, u) = 0 using (32) and (33). 
 
Therefore (x, y, u) = 0, since R is 3- divisible.  
 
Associating equation (4) with r, s and using (x, y, u) = 0, then we obtain  

(r, s, w(x, y, z)) = - (r, s, (w, x, y,)z) 
= - (r, s,z(w, x, y)), 
= (r, s, (z, w, x)y), permutating z, w, x, y cyclically 
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= (r, s, y(z, w, x)), 
= - (r, s, y(z, x, w)) using (2). 
= (r, s, (y, z, x)w) again cyclically. 
= (r, s, w(y, z, x). 
= -(r, s, w(z, y, x)), using (21). 
= (r, s, w(z, x, y)) using (2). 

 
∴ (r, s, w(x, y, z)) = (r, s, w(y, z, x)) = (r, s, w(z, x, y))                                    (34) 

 
Multiplying the equation (1) with w and associate with r, s then we obtain 

(r, s, w(x, y, z)) + (r, s, w(y, z, x)) + (r, s, w(z, x, y)) = 0. 
 
Using (34), the above equation becomes 

3(r, s, w(x, y, z)) = 0, since R is 3- divisible then we have (r, s, w(x, y, z)) = 0. 
 
We get (r, s, w) (x, y, z) = 0 by using (6). 
 
Hence (R, R, R) (R, R, R) = 0. 
 
We know that A is an associator ideal of R, so A.A=0, since R is semiprime then the ideal A2 = 0 implies A=0. 
 
That is (R, R, R) = 0. Hence R is associative.                                             
 
Now we give an example of a(-1,1) ring, which is nonassociative. 
 
Example: Consider the algebra having basis elements x, y and z over an arbitrary field. We define x2=y, yx=z and all 
other products of basis elements equal to zero. It clearly satisfies (1) and (2) conditions. Hence it is a (-1, 1) ring, but 
not associative, since (x, x, x) = z. 
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