

EDGE VERSION

OF INVERSE SUM INDEG INDEX OF CERTAIN NANOTUBES AND NANOTORI

V. R. KULLI*

Department of Mathematics, Gulbarga University, Gulbarga 585106, India.

(Received On: 10-11-17; Revised & Accepted On: 28-11-17)

ABSTRACT

Chemical graph theory is a branch of graph theory whose focus of interest is to finding topological indices of chemical molecular graphs, which correlate well with chemical properties of the chemical molecules. A topological index is a numerical parameter mathematically derived from the graph structure. In this paper, we compute the edge version of inverse sum indeg index of certain nanotubes and nanotori.

Key words: molecular graph, inverse sum indeg index, nanotubes, nanotori.

Mathematics Subject Classification: 05C05, 05C12.

1. INTRODUCTION

Let *G* be a finite, simple graph with vertex set V(G) and edge set E(G). The degree $d_G(v)$ of a vertex *v* is the number of vertices adjacent to *v*. The degree of an edge e = uv in *G* is defined by $d_G(e) = d_G(u) + d_G(v) - 2$. The line graph L(G) of a graph *G* whose vertex set corresponds to the edges of *G* such that two vertices of L(G) are adjacent if the corresponding edges of *G* are adjacent. We refer to [1] for undefined term and notation.

Chemical graph theory is a branch of Mathematical chemistry which has an important effect on the development of the chemical sciences. A topological index is a numerical parameter mathematically derived from the graph structure. Numerous such topological indices or descriptors have been considered in Theoretical Chemistry and have found some applications, especially in *QSPR/QSAR* studies, see [2, 3].

The inverse sum indeg index [4] of a graph G is defined as

$$ISI(G) = \sum_{uv \in E(G)} \frac{d_G(u)d_G(v)}{d_G(u) + d_G(v)}.$$
(1)

The edge version of the inverse sum indeg index [5] of a graph G is defined as

$$ISI_{e}(G) = \sum_{ef \in E(L(G))} \frac{d_{L(G)}(e)d_{L(G)}(f)}{d_{L(G)}(e) + d_{L(G)}(f)}.$$
(2)

Very recently the inverse sum indeg index was also studied, for example, in [6]. Many other edge version of indices were studied, for example, in [7, 8, 9, 10].

In this paper, the edge version of the inverse sum indeg index for certain nanotubes and nanotori are determined, For more information about nanotubes and nanotori see [11].

2. RESULTS FOR $TUC_4C_6C_8[p, q]$ NANOTUBE

We consider the graph of 2-*D* lattice of $TUC_4C_6C_8$ [*p*, *q*] nanotube with *p* columns and *q* rows. The graph of 2-*D* lattice of $TUC_4C_6C_8$ [2, 2] nanotube is shown in Figure 1 (a). The line graph of $TUC_4C_6C_8$ [2, 2] is shown in Figure 1 (b). Also the graph of $TUC_4C_6C_8$ [4, 5] is shown in Figure 1 (c).

International Research Journal of Pure Algebra-Vol.-7(11), Nov. - 2017

Let *G* be the graph of 2-*D* lattice of $TUC_4C_6C_8[p, q]$ nanotube. By calculation, we obtain $|E(L(TUC_4C_6C_8[p, q]))| = 18pq - 4p$. In $L(TUC_4C_6C_8[p, q])$, there are three types of edges based on the degree of the vertices of each edge. Thus by calculation, we obtain that the edge partitions of the line graph of $TUC_4C_6C_8[p, q]$ based on the sum of degrees of the end vertices of each edge as given in Table 1.

$d_{L(G)}(e), d_{L(G)}(f) \setminus ef \in E(L((G)))$	(3,3)	(3,4)	(4, 4)		
Number of edges	2p	8p	18pq - 14p		
Table-1: Edge partitions of $L(G)$					

Theorem 1: The edge version of inverse sum indeg index of $TUC_4C_6C_8[p, q]$ nanotube is given by

$$ISI_{e}(TUC_{4}C_{6}C_{8}[p,q]) = 36pq - \frac{79}{7}p.$$

Proof: Let *G* be the graph of $TUC_4C_6C_8[p, q]$ nanotube. From equation (2) and by cardinalities of the edge partitions of *L*(*G*), we have

$$\begin{split} ISI_{e} \left(TUC_{4}C_{6}C_{8}[p,q] \right) &= \sum_{ef \in E(L(G))} \frac{d_{L(G)}(e)d_{L(G)}(f)}{d_{L(G)}(e) + d_{L(G)}(f)}. \\ &= 2p \left(\frac{3 \times 3}{3+3} \right) + 8p \left(\frac{3 \times 4}{3+4} \right) + (18pq - 14p) \left(\frac{4 \times 4}{4+4} \right) \\ &= 36pq - \frac{79}{7}p. \end{split}$$

3. RESULTS OF $TUSC_4C_8(S)$ [p, q] NANOTUBE

We consider the graph of 2-*D* lattice of $TUSC_4C_8(S)$ [*p*, *q*] nanotube with *p* columns and *q* rows. The graph of 2-*D* lattice of $TUSC_4C_8(S)$ [1, 1] nanotube is shown in Figure 2(a). The line graph of $TUSC_4C_8(S)$ [1, 1] nanotube is shown in Figure 2(b). Also the graph of $TUSC_4C_8(S)$ [4, 5] is shown in Figure 2(c).

Let *G* be the graph of 2-*D* lattice of $TUSC_4C_8(S)[p, q]$) nanotube. By calculation, we obtain $|E(L(TUSC_4C_8(S)[p, q])| = 24pq + 4p$. In $L(TUSC_4C_8(S)[p, q])$, there are three types of edges based on the degree of the vertices of each edge. Thus by calculation, we obtain the edge partitions of $L(TUSC_4C_8(S)[p,q])$ based on the sum of degrees of the end vertices of each edge as given in Table 2.

$d_{L(G)}(e), d_{L(G)}(f) \setminus ef \in E(L((G)))$	(2,3)	(3,4)	(4, 4)	
Number of edges	4p	8 <i>p</i>	24pq - 8p	
Table 2. Edge next time of $L(C)$				

Table-2: Edge partitions of L(G)

In the following theorem, we compute the exact value of ISI_e index of $TUSC_4C_8(S)[p, q]$ nanotube.

Theorem 2: The edge version of inverse sum indeg index of $TUSC_4C_8(S)[p, q]$ nanotube is given by

$$ISI_{e}(TUSC_{4}C_{8}(S)[p,q]) = 48pq + \frac{88}{35}p.$$

Proof: Let *G* be the graph of $TUSC_4C_8(S)[p, q]$ nanotube. From equation (2) and by cardinalities of the edge partitions of L(G), we have

$$ISI_{e}(TUSC_{4}C_{8}(S)[p,q]) = \sum_{ef \in E(L(G))} \frac{d_{L(G)}(e)d_{L(G)}(f)}{d_{L(G)}(e) + d_{L(G)}(f)}$$
$$= 4p\left(\frac{2 \times 3}{2+3}\right) + 8p\left(\frac{3 \times 4}{3+4}\right) + (24pq - 8p)\left(\frac{4 \times 4}{4+4}\right)$$
$$= 48pq + \frac{88}{35}p.$$

4. RESULTS FOR $C_4C_6C_8$ [p, q] NANOTORI

We consider the graph of 2-*D* lattice of $C_4C_6C_8$ [*p*, *q*] nanotori with *p* columns and *q* rows. The graph of 2-*D* lattice of $C_4C_6C_8$ [2, 1] nanotori is shown Figure 3(a). The line graph of 2-*D* lattice of $C_4C_6C_8$ [2,1] nanotori is shown in Figure 3(b). Also the graph of 2-*D* lattice of $C_4C_6C_8$ [4,4] nanotori is shown in Figure 3(c).

Let *G* be the graph of 2-*D* lattice of $C_4C_6C_8[p, q]$ nanotori. By calculation, we obtain $|E(L(C_4C_6C_8[p,q]))| = 18pq - 2p$. In $L(C_4C_6C_8[p, q])$, there are four types of edges based on the degree of the vertices of each edge. Thus by calculation, we obtain that the edge partitions of the line graph of $C_4C_6C_8[p,q]$ based on the sum of degrees of the end vertices of each edge as given in Table 3.

$d_{L(G)}(e), d_{L(G)}(f) \setminus ef \in E(L((G)))$	(2,4)	(3,3)	(3, 4)	(4, 4)
Number of edges	2p	р	4p	18pq – 9p
Table-3: Edge partitions of $L(G)$				

In the next theorem, we compute the exact value of ISI_e index of $C_4C_6C_8[p, q]$ nanotori.

Theorem 3: The edge version of the inverse sum indeg index of $C_4C_6C_8[p, q]$ is given by

$$ISI_{e}(C_{4}C_{6}C_{8}[p,q]) = 36pq - \frac{293}{42}p.$$

Proof: Let *G* be the graph of $C_4C_6C_8[p, q]$ nanotori. From equation (2) and by cardinalities of the edge partitions of L(G), we have

$$\begin{split} ISI_{e} \left(C_{4}C_{6}C_{8}[p,q] \right) &= \sum_{ef \in E(L(G))} \frac{d_{L(G)}(e) d_{L(G)}(f)}{d_{L(G)}(e) + d_{L(G)}(f)} \\ &= 2p \left(\frac{2 \times 4}{2 + 4} \right) + p \left(\frac{3 \times 3}{3 + 3} \right) + 4p \left(\frac{3 \times 4}{3 + 4} \right) + \left(18pq - 9p \right) \left(\frac{4 \times 4}{4 + 4} \right) \\ &= 36pq - \frac{293}{42}p. \end{split}$$

5. RESULTS FOR $TC_4C_8(S)[p, q]$ NANOTORI

We consider the graph of 2-*D* lattice of $TC_4C_8(S)[p, q]$ nanotori with *p* columns and *q* rows. The graph of 2-*D* lattice of $TC_4C_8(S)[1, 1]$ nanotori is shown in Figure 4(a). The line graph of 2-*D* lattice of $TC_4C_8(S)[1, 1]$ nanotori is shown in Figure 4(b). Also the graph of 2-*D* lattice of $TC_4C_8(S)[5, 3]$ nanotori is shown in Figure 4(c).

Let *G* be the graph of 2-*D* lattice of $TC_4C_8(S)[p, q]$ nanotori. By calculation, we obtain $|E(L(TC_4C_8(S)[p, q]))| = 24pq - 4p$. In $L(TC_4C_8(S)[p, q])$, there are four types of edges based on the degree of the vertices of each edge. Thus by calculation, we obtain that the edge partitions of the line graph of $TC_4C_8(S)[p, q]$ based on the sum of degrees of the end vertices of each edge as given in Table 4.

$d_{L(G)}(e), d_{L(G)}(f) \setminus ef \in E(L((G)))$	(2,3)	(2,4)	(3, 4)	(4, 4)	
Number of edges	2p	4p	4p	24pq - 14p	
Table-4: Edge partitions of $L(G)$					

In the following theorem, we compute the exact value of ISI_e index of $TC_4C_8(S)[p, q]$ nanotori.

Theorem 4: The edge version of inverse sum indeg index of $TC_4C_8(S)[p, q]$ nanotori is given by

$$ISI_{e}(TC_{4}C_{8}(S)[p,q]) = 48pq - \frac{1408}{105}p.$$

Proof: Let *G* be the graph of $TC_4C_8(S)[p, q]$ nanotori. From equation (2) and by cardinalities of the edge partitions of L(G), we have

$$\begin{split} ISI_{e} \left(TC_{4}C_{8}(S)[p,q] \right) &= \sum_{ef \in E(L(G))} \frac{d_{L(G)}(e) d_{L(G)}(f)}{d_{L(G)}(e) + d_{L(G)}(f)} \\ &= 2p \left(\frac{2 \times 3}{2 + 3} \right) + 4p \left(\frac{2 \times 4}{2 + 4} \right) + 4p \left(\frac{3 \times 4}{3 + 4} \right) + \left(24pq - 14p \right) \left(\frac{4 \times 4}{4 + 4} \right) \\ &= 48pq - \frac{1408}{105}p. \end{split}$$

REFERENCES

- 1. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- 2. I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
- 3. R.Todeschini and V. Consonni, *Molecular Descriptors for Chemoinformatics*, Wiley-VCH, Weinheim, (2009).
- 4. D. Vukičević and M. Gaśperov, Bond additive modeling 1. Adriatic indices, *Croat. Chem. Acta*, 83(2010) 243-260.
- 5. M. Bhanumathi, K. Easu Julia Rani and S. Balachandran, The edge inverse sum indeg index connected graph, *International Journal of Mathematical Archive*, 7(1) (2016) 8-12.
- 6. V.R. Kulli, Some Gourava indices and inverse sum indeg index of certain networks, *International Research Journal of Pure Algebra*, 7(7) (2017) 787-798.
- 7. V.R Kulli, Edge version of *F*-index, general sum connectivity index of certain nanotubes, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 449-455 DOI:http://dx.doi.org/apam.v14n3a11.
- 8. V.R Kulli, Edge version of multiplicative connectivity indices of some nanotubes and nanotorus, submitted.
- 9. V.R.Kulli, Edge version of multiplicative atom bond connectivity index of certain nanotubes and nanotorus, submitted.
- 10. V.R. Kulli, Edge version of augmented Zagreb indices of certain nanotubes, submitted.
- 11. M.N. Husin, R. Hasni, M. Imran and H. Kamarulhaili, The edge version of geometric-arithmetic index of nanotubes and nanotori, *Optoelectronics and Adv. Materials-Rapid Commun.* 9(9-10) (2015) 1292-1300.

Source of Support: Nil, Conflict of interest: None Declared