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ABSTRACT 
In this paper, a new class of maps called Dpgprw (i,j)-𝜎k-continuous maps in bitopological spaces are introduced and 
investigated; during this process ,some of their properties are obtained. 
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INTRODUCTİON 
 
The Triple (X, 𝜏1, 𝜏2) where X is a set and 𝜏1 and 𝜏2 are topologies on X is called a bitopological space. H.Maki, 
P.Sundaram &K.Balachandran [1] introduced generalized maps & pasting lemma  in Bitopological spaces. 
 
2.PRELİMİNARİES: f: (X, 𝜏1,𝜏2) → (Y,𝜎1 𝜎2) 

(i) 𝜏j - 𝜎k-continuous maps [1] if f – 1(V)𝜖 𝜏j –for every V 𝜖 𝜏k. 
(ii) C(i,j)- 𝜎k-continuous maps [2] if f – 1(V)𝜖C(i,j) for every 𝜎k – closed set in (Y,𝜎1 𝜎2). 
(iii) D(i,j)- 𝜎k-continuous maps [1] if f – 1(V)𝜖D(i,j) for every 𝜎k – closed set in (Y,𝜎1 𝜎2). 
(iv) W(i,j)- 𝜎k-continuous maps [3] if f – 1(V)𝜖W(i,j) for every 𝜎k – closed set in (Y,𝜎1 𝜎2). 
(v) Drg(i,j)- 𝜎k-continuous maps [4] if f – 1(V)𝜖Drg(i,j) for every 𝜎k – closed set in (Y,𝜎1 𝜎2). 
(vi) 𝜔(i,j)- 𝜎k-continuous maps [5] if f – 1(V)𝜖 𝜔(i,j) for every 𝜎k – closed set in (Y,𝜎1 𝜎2). 

 
2.1 Theorem: [6] 

(i) If  A is, 𝜏j- closed subset of a bitopological space (X, 𝜏1, 𝜏2), then the set A is (i,j) Pgprw-closed.  
(ii) If A is a (i,j)- pgprw-closed subset of (X, 𝜏1, 𝜏2), then A is (i,j) gpr-closed. 

 
2.2 Theorem: [6] If A and B be subsets of (X, 𝜏1,𝜏2) then   

(i) (i,j) pgprw-cl(X)=X and (i,j)-pgprw-cl(∅). 
(ii) A ⊆ (i,j)-pgprw-cl(A) 
(iii) if B is any (i,j) pgprw-closed set containing A Then (i,j)-pgprw-cl(A) ⊆ B. 

 
3. Dpgprw (i,j)-𝝈k-CONTİNUOUS MAPS MAPS İN BİTOPOLOGİCAL SPACES. 
 
Definition 3.1: A map f: (X, 𝜏1, 𝜏2) → (Y,𝜎1 𝜎2) is called  Dpgprw (i,j)-𝜎k-continuous maps if the inverse image of every 
𝜎k – closed set is an (i,j)-pgprw-closed set in (X,𝜏 1,𝜏2 ). 
 
Remark 3.2: If    𝜏1 = 𝜏2 =  𝜏    and 𝜎1=  𝜎2 = 𝜎 in definition 3.1 then the Dpgprw (i,j)-𝜎k-continuous of maps coincides 
with pgprw-continuity of maps in topological spaces. 
 
Theorem 3.3:If a map f: (X, 𝜏1, 𝜏2) → (Y,𝜎1 𝜎2) is 𝜏j- 𝜎k-continuous maps then it is Dpgprw (i,j)-𝜎k-continuous maps.  
 
Proof: Let V be a 𝜎k – closed set since f is 𝜏j- 𝜎k-continuous maps, f -1(V) is 𝜏j-closed by theorem 2.1[6] f -1(V) is 
(i,j)pgprw-closed in (X, 𝜏1, 𝜏2). Therefore f is  Dpgprw (i,j)-𝜎k-continuous maps. 
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The converse of this theorem need not be true in general as seen from the following example, 
 
Example 3.4: Let X = {a, b, c}, 𝜏1 = {X, ∅, {a}} and 𝜏2 = {X, ∅, {a,b }}, Y= {b, c}, 𝜎1 ={Y, ∅,{b}}  
and 𝜎2 = {Y, ∅, {c}}. Define a map f: (X, 𝜏1, 𝜏2) → (Y, 𝜎1, 𝜎2) by f(a) = c, f(b) = b, f(c) = c. Then f is Dpgprw (2,1)- 𝜎2-
continuous maps but it is not 𝜏1- 𝜎2-continuous maps since for the closed set {b},  
f -1(b)={b}, which is not 𝜏1-closed. 
 
Theorem 3.5: If a map f: (X, 𝜏1, 𝜏2) → (Y,𝜎1 𝜎2) is Dpgprw(i,j) 𝜎k-continuous maps then it is 𝜔 (i,j)-𝜎k-continuous maps. 
 
Proof: Let V be a 𝜎k – closed set since f is Dpgprw(i, j) 𝜎k-continuous maps, f -1(V) is (i,j) pgprw-closed by theorem 
2.1[6] then f -1(V) is gpr −closed in (X, 𝜏1, 𝜏2).Therefore f is  𝜔-(i,j)-𝜎k-continuous maps. 
 
The converse of this theorem need not be true in general as seen from the following example, 
 
Example 3.6: Let X={a, b, c} 𝜏1={X, ∅,{a},{b},{a,b}} and 𝜏2 = {X, ∅,{a}} & Y= {a, b}, 𝜎1 = {Y, ∅} and                   
𝜎2 = {Y, ∅, {𝑏}}. Define a map f: (X,𝜏1, 𝜏2)→ (Y,𝜎1 𝜎2) by f(a) = f(b) = a and f(c) = b. Then this function f is 
gpr(1,2)−𝜎2 − continuous maps, but it is not Dpgprw(1,2) 𝜎2 − continuous maps. since for the  𝜎2 closed set{a},           
f -1(a)={a,b}, which is not (1,2) pgprw-closed set. 
 
Remark 3.7: Dpgprw(i,j) 𝜎k-continuous maps and D (i,j)-𝜎k-continuous maps maps are independent. 
 
Example 3.8: Let X={a, b, c} 𝜏1={X, ∅, {a},{b},{a, b}}and 𝜏2 = {X, ∅,{a}} & Y= {a, b}, 𝜎1 ={Y, ∅} and                   
𝜎2 = {Y, ∅, {𝑎}}. Define a map f: (X,𝜏1,𝜏2) → (Y,𝜎1 𝜎2) by f(a) = f(c) = a and f(b) = b. Then this function f is Dpgprw(i,j) 
𝜎2-continuous maps, but it is not (1,2) 𝜎2 − continuous maps. since for the 𝜎2 closed set{b}, f -1(b) ={b}, which is not 
(1,2) g-closed set. 
 
Example 3.9: Let X={a, b, c} 𝜏1={X, ∅, {a},{b},{a, b}} and 𝜏2 = {X, ∅, {a},{a, b}} & Y= {a, b}, 𝜎1=P(Y) and           
𝜎2 = {Y, ∅, {𝑏}}. Define a map f: (X, 𝜏1, 𝜏2) → (Y,𝜎1, 𝜎2) by f(b) = b, f(c) = a and f(a) = a. Then this function f is D(1,2) 
𝜎2-continuous maps, but it is not D(1,2) 𝜎2 − continuous maps. since for the 𝜎2 closed set{a}, f -1(a)={a,c}, which is 
not (1,2) pgprw-closed set. 
 
Remark 3.10: Dpgprw(i,j) 𝜎k-continuous maps and W(i,j)-𝜎k-continuous maps maps are independent 
 
Example 3.11: Let X={a,b,c} 𝜏1={X,∅,{a},{a,b}}and 𝜏2 = {X,∅,{a}}&Y= {a,b}, 𝜎1 =P(Y) and 𝜎2={Y, ∅, {𝑎}}.  
Define a map f: (X,𝜏 1,𝜏2 ) → (Y,𝜎1 𝜎2) by f(a)=a,f(b)=b & f(c) = a. Then this function f is Dpgprw(i,j) 𝜎2-continuous 
maps, but it is not W(1,2) 𝜎2 − continuous maps. since for the 𝜎2 closed set{b}, f -1(b) ={b},which is not (1,2) wg-
closed set. 
 
Example 3.12: Let X={a, b, c} 𝜏1={X, ∅,{a}}and 𝜏2={X, ∅,{a},{a,b}}&Y={b,c}, 𝜎1={Y, ∅} and 𝜎2 = {Y, {∅}, {𝑐}}. 
Define a map f: (X,𝜏 1,𝜏2) → (Y,𝜎1 𝜎2) by f(a) = b, f(b) = c, f(c) = b. Then this function f is W(1,2)-𝜎2-continuous 
maps, but it is not Pgprw(1,2) 𝜎2 − continuous maps. since for the 𝜎2 closed set{b}, f -1(b) ={a,c}, which is not (1,2) 
pgprw-closed set. 
 
Remark 3.13: From the above discussions and known results we have the following implication form. 
 

 
 
Theorem 3.14:The following statements are equivalent. 
(i)  A map  f: (X,𝜏 1,𝜏2) → (Y,𝜎1 𝜎2) is Dpgprw(i,j) 𝜎k-continuous maps.   
(ii) The inverse image 𝑜𝑓 𝜎k –open set in Y is (i,j)-pgprw-open in Y. 
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Proof: (i) implies (ii)  Let G be a  𝜎k –open in Y.Then Gc  is 𝜎k –closed set in Y. Since f is Dpgprw(i,j) 𝜎k continuous 
maps, f – 1(Gc ) is (i,j)pgprw-closed in X That is f – 1 (Gc ) = (f – 1 (Gc )C  and so on (f – 1 (Gc ) is (i,j) pgprw-open in        
(X, 𝜏1, 𝜏2).  
 
(ii) implies (i) Let F be a  𝜎k –closed in Y. Then Fc  is 𝜎k –open set   in Y, By hypothesis f – 1 (Fc ) is (i,j)pgprw-open in 
X. That is f – 1(Fc ) = (f – 1(Fc )C and so f – 1 (F ) is (i,j) pgprw-closed in (X,𝜏 1,𝜏2 ). Therefore f is Dpgprw(i,j) 𝜎k-continuous 
maps. 
 
Theorem 3.15:  If a map  f: (X,𝜏1,𝜏2) → (Y,𝜎1 𝜎2) is  Dpgprw(i,j) 𝜎k-continuous maps, then f(i,j)-pgprw-cl(A) ⊆ 𝜎k –p-
cl(A) holds for every subset A of X. 
 
Proof: Let A be any subset of X then f(A) ⊆ 𝜎k –p-cl(A) and 𝜎k –p-cl(A) is 𝜎k- closed set in Y also  
f – 1(f(A)) ⊆ f – 1(𝜎k –p-cl(A)) that is A⊆ f – 1(𝜎k –p-cl(A)) since f is Dpgprw(i,j) 𝜎k-continuous maps, f – 1(𝜎k –p-cl(A)) is a 
(i,j) pgprw-closed set in (X, 𝜏1, 𝜏2 ) by thm 2.2 (i,j) pgprw-cl(A) ⊆ f – 1(𝜎k –p-cl(A)),Therefore f(i,j)pgprw-cl(A) ⊆        
f(f - 1 𝜎k –p-cl(A)) ⊆ 𝜎k –p-cl(A)) hence f(i,j)- pgprw-cl(A) ⊆ (𝜎k –p-cl(A)), for every subset A of (X,𝜏 1,𝜏2 ). 
 
Remark 3.16: Converse of the Theorem 3.15 is not true in general as seen from the following example. Let 
X={a,b,c} 𝜏1={X,∅,{a},{b},{a,b}} and 𝜏2 = {X,∅,{a},{b,c}}&Y= {a,b}, 𝜎1 =P(Y) and 𝜎2 = {Y, ,∅, {𝑎}}.Dpgprw (1,2) = 
{X,∅,{b,c}} Define a map  f: (X, 𝜏1, 𝜏2) → (Y,𝜎1 𝜎2 ) by f(a)=f(c)=a & f(b)=b. Then f(1,2)-pgprw-cl(A) ⊆ 𝜎2 –p-cl(A) 
for every subset A of X but f is not Dpgprw(i,j) 𝜎2-continuous maps,Since for the closed set {b}, f – 1({b}) = b which is 
not a (1,2) pgprw-closed in (X, 𝜏1, 𝜏2). 
 
Theorem 3.17: If a map  f: (X, 𝜏1,𝜏2) → (Y, 𝜎1,𝜎2) is   Dpgprw(i,j) 𝜎k-continuous maps  and g:(Y,𝜎1 𝜎2 ) → (Z,𝜇1, 𝜇2)  is 
𝜎k - 𝜇𝑛 continuous maps, then gof is Dpgprw(i,j) - 𝜇𝑛-continuous maps. 
 
Proof: Let f be 𝜇𝑛 closed set in (Z,𝜇1,𝜇2) since g is 𝜎k - 𝜇𝑛  continuous maps, g – 1(F) is a  𝜎k-closed set in (Y,𝜎1 𝜎2)  
since f is Dpgprw(i,j) 𝜎k-continuous maps, f -1(g – 1(F)) = (gof)-1(F) is a (i,j) pgprw-closed in (X,𝜏1,𝜏2) and hence gof is 
Dpgprw(i,j) - 𝜇𝑛-continuous maps.       
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