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ABSTRACT 
We propose the minus leap index and square leap index of a graph. In this paper, we compute the minus leap and 
square leap indices and their polynomials of wheel, gear, helm, flower and sunflower graphs.  
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1. INTRODUCTION  
 
We consider only finite, simple connected graphs. Let G be a graph with a vertex set V(G) and an edge set E(G). The 
distance between two vertices u and v of a graph G is the number of edges in a shortest path connecting u and v; and it 
is denoted by d(u, v). For a positive integer k and a vertex v in G, the open neighborhood of v is defined as            
Nk(v/G) = {u ∈ V(G) : d(u, v) = k}. The k-distance degree dk(v) of a vertex v in G is the number of k neighbors of v in 
G, see [1].  
 
In [1], the first and second leap Zagreb indices were introduced and defined as 
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Recently, some novel variants of leap indices were introduced and studied such as leap hyper-Zagreb indices, [2], sum 
connectivity leap index and geometric-arithmetic leap index [3], F-leap indices [4], augmented leap index [5]. 
 
In [6], Albertson proposed the irrregularity index (called as minus index in [7]), and defined as 
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Recently, the square ve-degree index [8] was introduced and defined as 
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Very recently, some square indices were proposed and studied such as square reverse index [9] and square Revan index 
[10]. 
 
We now propose the minus leap index and square leap index of a graph G as follows: 
 
The minus leap index of a graph G is defined as 
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The square leap index of G is defined as 
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Considering the minus leap and square leap indices, we define the minus leap polynomial and square leap polynomial 
of G as 
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In this paper, exact expressions for the minus leap and square leap indices and their polynomials of some special 
graphs. For special graphs see [11]. 

 
2. WHEELS 
 
The wheel Wn is the join of Cn and K1. Clearly, |V(Wn)| = n+1 and E(Wn) = 2n. The vertex K1 is called apex and the 
vertices of Cn are called rim vertices. A graph Wn is shown in Figure 1. Throughout this paper, we consider a wheel Wn 
with n+1 vertices. 

 
Figure-1: Wheel Wn 

 
Lemma 1: Let Wn be a wheel with 2n edges, n≥3. Then Wn has two types of the 2-distance degree of edges as given 
below: 
 E1 = {uv ∈ E(Wn) | d2(u) = 0, d2(v) = n – 3}, | E1 | = n. 
 E2 = {uv ∈ E(Wn) | d2(u) =  d2(v) = n – 3}, | E2 | = n. 
 
Theorem 2: Let Wn be a wheel with n+1 vertices and 2n edges, n≥3. Then  
(a)    3nML W n n   (b)    23 .nQL W n n   
 
Proof:  
(a) From equation (1) and by Lemma 1, we obtain 
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(b) From equation (2) and by Lemma 1, we obtain 
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Theorem 3: Let Wn be a wheel with 2n+1 vertices and 2n edges. Then  
a)   3 0, .n

nML W x nx nx   

b)    23 0, .n
nQL W x nx nx   
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Proof:  
(a) From equation (3) and by Lemma 1, we have 
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(b) From equation (4) and by Lemma 1, we have 
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3. GEAR GRAPHS 
 
The gear graph Gn is a graph obtained from wheel Wn by adding a vertex between each pair of adjacent rim vertices. 
Clearly, |V(Gn)| = 2n+1 and |E(Gn)| = 3n. A gear graph Gn is presented in Figure 2. 
 

 
Figure-2: Gear graph Gn 

 
Lemma 4: Let Gn be a gear graph with 3n edges, n≥3. Then Gn has two types of the 2-distance degree of edges as 
follows: 
 E1 = {uv ∈ E(Gn) | d2(u) = n, d2(v) = n – 1}, | E1 | = n. 
 E2 = {uv ∈ E(Gn) | d2(u) = 3, d2(v) = n – 1}, | E2 | = 2n. 
 
Theorem 5: Let Gn be a gear graph Gn with 2n edges, n≥4. Then  
(a)   22 7 .nML G n n   (b)   3 22 16 33 .nQL G n n n    
 
Proof:  
(a) By using Lemma 4 and equation (1), we have 
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(b) By using Lemma 4 and equation (2), we deduce 
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Theorem 6: Let Gn be a gear graph with 3n edges. n≥4 Then  
a)   4, 2 .n

nML G x nx nx    

b)    24, 2 .n
nQL G x nx nx    
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Proof:  
(a) From equation (3) and by Lemma 4, we obtain 
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(b) From equation (4) and by Lemma 4, we have 
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4. HELM GRAPHS 
 
The helm graph, denoted by Hn, is a graph obtained from Wn by attaching an end edge to each rim vertex. Clearly, 
|V(Hn)| = 2n+1 and |E(Hn)| = 3n. A helm graph Hn is shown in Figure 3. 

 
Figure-3: Helm graph Hn 

 
Lemma 7: Let Hn be a helm graph with 3n edges, n≥3. Then Hn has 3 types of the 2-distance degree of edges as 
follows: 
 E1 = {uv ∈ E(Hn) | d2(u) = n, d2(v) = n – 1}, | E1 | = n. 
 E2 = {uv ∈ E(Hn) | d2(u) = 3, d2(v) = n – 1}, | E2 | = n. 
 E3 = {uv ∈ E(Hn) | d2(u) = d2(v) = n – 1}, | E3 | = n. 
 
Theorem 8: Let Hn be a helm graph with 3n edges,  n≥4. Then  
(a)   2 3 .nML H n n   (b)   3 28 17 .nQL H n n n    
 
Proof:  
(a) By using Lemma 7 and equation (1), we deduce 
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(b) By using equation (2) and Lemma 7, we derive 
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Theorem 9: Let Hn be a helm graph with 3n edges. n≥4. Then  
a)   1 4 0, .n

nML H x nx nx nx    

b)    21 4 0, .n
nQL H x nx nx nx    



V. R. Kulli / Minus Leap and Square Leap Indices and Their Polynomials of Some Special Graphs / IRJPA- 8(11), Nov.-2018. 

© 2018, RJPA. All Rights Reserved                                                                                                                                                                         58 

 
Proof:  
(a) From equation (3) and by Lemma 7, we have 
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(b) From equation (4) and by Lemma 7, we obtain 
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5. FLOWER GRAPHS 
 
The flower graph Fln is a graph obtained from a helm graph Hn by joining each endvertex to the apex of Hn. Clearly, 
|V(Fln)| = 2n+1 and |E(Fln)| = 4n. A graph Fln is presented in Figure 4. 
 

 
Figure-4: Flower graph Fln 

 
Lemma 10: Let Fln be a flower graph with 4n edges, n≥3. Then Fln has 4 types of the 2-distance degree of edges as 
given below: 
 E1 = {uv ∈ E(Fln) | d2(u) = 0, d2(v) = n – 5}, | E1 | = n. 
 E2 = {uv ∈ E(Fln) | d2(u) = 0, d2(v) = n – 2}, | E2 | = n. 
 E3 = {uv ∈ E(Fln) | d2(u) = n – 5, d2(v) = n – 2}, | E3 | = n. 
 E4 = {uv ∈ E(Fln) | d2(u) = d2(v) = n – 5}, | E4 | = n. 
 
Theorem 11: Let Fln be a flower graph with 4n edges, n ≥ 3. Then  
(a)   22 4 .nML Fl n n   (b)   3 22 14 38 .nQL Fl n n n    
 
Proof:  
(a) By equation (1) and by Lemma 10, we have 
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(b) By using equation (2) and Lemma 10, we obtain 
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Theorem 12: Let Fln be a flower graph with 4n edges. n≥3. Then  
(a)   5 2 3 0, .n n

nML Fl x nx nx nx nx      

(b)      2 25 2 9 0, .n n
nQL Fl x nx nx nx nx      

 
Proof:  
(a) From equation (3) and by Lemma 10, we deduce 
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6. SUNFLOWER GRAPHS 
 
The sunflower graph Sfn is a graph obtained from the flower graph Fln by attaching n end edges to the apex vertex of 
Fln. Then we have |V(Sfn)| = 3n+1 and |E(Sfn)| = 5n. A graph Sfn is presented in Figure 5. 
 

 
Figure-5: Sunflower graph Sfn 

 
Lemma 13: Let Sfn be a sunflower graph with 5n edges, n≥3. Then Sfn has five types of the 2-distance degree of edges 
as given below: 
 E1 = {uv ∈ E(Sfn) | d2(u) = 0, d2(v) = 3n – 4}, | E1 | = n. 
 E2 = {uv ∈ E(Sfn) | d2(u) = 0, d2(v) = 3n – 2}, | E2 | = n. 
 E3 = {uv ∈ E(Sfn) | d2(u) = 0, d2(v) = 3n – 1}, | E3 | = n. 
 E4 = {uv ∈ E(Sfn) | d2(u) = d2(v) = 3n – 4}, | E4 | = n. 
 E5 = {uv ∈ E(Sfn) | d2(u) = 3n – 4, d2(v) = 3n – 2}, | E5 | = n. 
 
Theorem 14: Let Sfn be a sunflower graph with 5n edges. Then  
(a)   29 5 .nML Sf n n    (b)   3 227 42 25 .nQL Sf n n n    
 
Proof:  
(a) By equation (1) and by Lemma 13, we deduce 
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(b) By using equation (2) and Lemma 13, we derive 
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Theorem 15: Let Sfn be a sunflower graph with 5n edges. Then  
a)   3 4 3 2 3 1 0 2, .n n n

nML Sf x nx nx nx nx nx        

b)        2 2 23 4 3 2 3 1 0 4, .n n n
nQL Sf x nx nx nx nx nx        

 
Proof:  
(a) From equation (3) and by Lemma 13, we have 
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(b) From equation (4) and by Lemma 13, we obtain 
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      2 2 23 4 3 2 3 1 0 4.n n nnx nx nx nx nx        
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