International Research Journal of Pure Algebra-8(11), 2018, 54-60

Available online through www.rjpa.info ISSN 2248-9037

MINUS LEAP AND SQUARE LEAP INDICES
 AND THEIR POLYNOMIALS OF SOME SPECIAL GRAPHS

V. R. KULLI
Department of Mathematics, Gulbarga University, Gulbarga, 585106, India.

(Received On: 19-10-18; Revised \& Accepted On: 15-11-18)

Abstract

We propose the minus leap index and square leap index of a graph. In this paper, we compute the minus leap and square leap indices and their polynomials of wheel, gear, helm, flower and sunflower graphs.

Keywords: minus leap index, square leap index, wheel.
Mathematics Subject Classification: 05C07, 05C12, 05 C76.

1. INTRODUCTION

We consider only finite, simple connected graphs. Let G be a graph with a vertex set $V(G)$ and an edge set $E(G)$. The distance between two vertices u and v of a graph G is the number of edges in a shortest path connecting u and v; and it is denoted by $d(u, v)$. For a positive integer k and a vertex v in G, the open neighborhood of v is defined as $N_{k}(v / G)=\{u \in V(G): d(u, v)=k\}$. The k-distance degree $d_{k}(v)$ of a vertex v in G is the number of k neighbors of v in G, see [1].

In [1], the first and second leap Zagreb indices were introduced and defined as

$$
L M_{1}(G)=\sum_{u \in V(G)} d_{2}^{2}(u) \quad L M_{2}(G)=\sum_{u v \in E(G)} d_{2}(u) d_{2}(v) .
$$

Recently, some novel variants of leap indices were introduced and studied such as leap hyper-Zagreb indices, [2], sum connectivity leap index and geometric-arithmetic leap index [3], F-leap indices [4], augmented leap index [5].

In [6], Albertson proposed the irrregularity index (called as minus index in [7]), and defined as

$$
M_{i}(G)=\sum_{u v \in E(G)}|d(u)-d(v)| .
$$

Recently, the square ve-degree index [8] was introduced and defined as

$$
Q_{v e}(G)=\sum_{u v \in E(G)}\left[d_{v e}(u)-d_{v e}(v)\right]^{2} .
$$

Very recently, some square indices were proposed and studied such as square reverse index [9] and square Revan index [10].

We now propose the minus leap index and square leap index of a graph G as follows:
The minus leap index of a graph G is defined as

$$
\begin{equation*}
M L(G)=\sum_{u v \in E(G)}\left|d_{2}(u)-d_{2}(v)\right| . \tag{1}
\end{equation*}
$$

The square leap index of G is defined as

$$
\begin{equation*}
Q L(G)=\sum_{u v \in E(G)}\left[d_{2}(u)-d_{2}(v)\right]^{2} \tag{2}
\end{equation*}
$$

Considering the minus leap and square leap indices, we define the minus leap polynomial and square leap polynomial of G as

$$
\begin{align*}
& M L(G, x)=\sum_{u v \in E(G)} x^{\left|d_{G}(u)-d_{G}(v)\right|} \tag{3}\\
& Q L(G, x)=\sum_{u v \in E(G)} x^{\left[d_{G}(u)-d_{G}(v)\right]^{2}} \tag{4}
\end{align*}
$$

In this paper, exact expressions for the minus leap and square leap indices and their polynomials of some special graphs. For special graphs see [11].

2. WHEELS

The wheel W_{n} is the join of C_{n} and K_{1}. Clearly, $\left|V\left(W_{n}\right)\right|=n+1$ and $E\left(W_{n}\right)=2 n$. The vertex K_{1} is called apex and the vertices of C_{n} are called rim vertices. A graph W_{n} is shown in Figure 1. Throughout this paper, we consider a wheel W_{n} with $n+1$ vertices.

Figure-1: Wheel W_{n}
Lemma 1: Let W_{n} be a wheel with $2 n$ edges, $n \geq 3$. Then W_{n} has two types of the 2-distance degree of edges as given below:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(W_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=n-3\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(W_{n}\right) \mid d_{2}(u)=d_{2}(v)=n-3\right\}, & \left|E_{2}\right|=n .
\end{array}
$$

Theorem 2: Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges, $n \geq 3$. Then
(a) $\quad M L\left(W_{n}\right)=n(n-3)$
(b) $Q L\left(W_{n}\right)=n(n-3)^{2}$.

Proof:

(a) From equation (1) and by Lemma 1, we obtain

$$
\begin{aligned}
M L\left(W_{n}\right) & =\sum_{u v \in E\left(W_{n}\right)}\left|d_{2}(u)-d_{2}(v)\right| \\
& =n|0-(n-3)|+n|(n-3)-(n-3)|=n(n-3)
\end{aligned}
$$

(b) From equation (2) and by Lemma 1, we obtain

$$
\begin{aligned}
Q L\left(W_{n}\right) & =\sum_{u v \in E\left(W_{n}\right)}\left[d_{2}(u)-d_{2}(v)\right]^{2} \\
& =n[0-(n-3)]^{2}+n[(n-3)-(n-3)]^{2}=n(n-3)^{2}
\end{aligned}
$$

Theorem 3: Let W_{n} be a wheel with $2 n+1$ vertices and $2 n$ edges. Then
a) $\quad M L\left(W_{n}, x\right)=n x^{n-3}+n x^{0}$.
b) $\quad Q L\left(W_{n}, x\right)=n x^{(n-3)^{2}}+n x^{0}$.

Proof:

(a) From equation (3) and by Lemma 1, we have

$$
\begin{aligned}
M L\left(W_{n}, x\right) & =\sum_{u v \in E\left(W_{n}\right)} x^{\left|d_{2}(u)-d_{2}(v)\right|} \\
& =n x^{|0-(n-3)|}+n x^{(n-3)-(n-3) \mid}=n x^{(n-3)}+n x^{0}
\end{aligned}
$$

(b) From equation (4) and by Lemma 1, we have

$$
\begin{aligned}
Q L\left(W_{n}, x\right) & =\sum_{u v \in E(G)} x^{\left[d_{2}(u)-d_{2}(v)\right]^{2}} \\
& =n x^{[0-(n-3)]^{2}}+n x^{[(n-3)-(n-3)]^{2}}=n x^{(n-3)^{2}}+n x^{0}
\end{aligned}
$$

3. GEAR GRAPHS

The gear graph G_{n} is a graph obtained from wheel W_{n} by adding a vertex between each pair of adjacent rim vertices. Clearly, $\left|V\left(G_{n}\right)\right|=2 n+1$ and $\left|E\left(G_{n}\right)\right|=3 n$. A gear graph G_{n} is presented in Figure 2.

Figure-2: Gear graph G_{n}
Lemma 4: Let G_{n} be a gear graph with $3 n$ edges, $n \geq 3$. Then G_{n} has two types of the 2-distance degree of edges as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(G_{n}\right) \mid d_{2}(u)=n, d_{2}(v)=n-1\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(G_{n}\right) \mid d_{2}(u)=3, d_{2}(v)=n-1\right\}, & \left|E_{2}\right|=2 n .
\end{array}
$$

Theorem 5: Let G_{n} be a gear graph G_{n} with $2 n$ edges, $n \geq 4$. Then
(a) $\quad \operatorname{ML}\left(G_{n}\right)=2 n^{2}-7 n$.
(b) $Q L\left(G_{n}\right)=2 n^{3}-16 n^{2}+33 n$.

Proof:
(a) By using Lemma 4 and equation (1), we have

$$
\begin{aligned}
\operatorname{ML}\left(G_{n}\right) & =\sum_{u v \in E\left(G_{n}\right)}\left|d_{2}(u)-d_{2}(v)\right| \\
& =n|n-(n-1)|+2 n|3-(n-1)|=2 n^{2}-7 n
\end{aligned}
$$

(b) By using Lemma 4 and equation (2), we deduce

$$
\begin{aligned}
Q L\left(G_{n}\right) & =\sum_{u v \in E\left(G_{n}\right)}\left[d_{2}(u)-d_{2}(v)\right]^{2} \\
& =n[n-(n-1)]^{2}+2 n[3-(n-1)]^{2}=2 n^{2}-16 n^{2}+33 n
\end{aligned}
$$

Theorem 6: Let G_{n} be a gear graph with $3 n$ edges. $n \geq 4$ Then
a) $\quad M L\left(G_{n}, x\right)=n x+2 n x^{n-4}$.
b) $\quad Q L\left(G_{n}, x\right)=n x+2 n x^{(n-4)^{2}}$.

Proof:

(a) From equation (3) and by Lemma 4, we obtain

$$
\begin{aligned}
M L\left(G_{n}, x\right) & =\sum_{u v \in E\left(G_{n}\right)} x^{\left|d_{2}(u)-d_{2}(v)\right|} \\
& =n x^{|n-n+1|}+2 n x^{|3-n+1|}=n x^{1}+2 n x^{n-4}, \text { since } n \geq 4
\end{aligned}
$$

(b) From equation (4) and by Lemma 4, we have

$$
\begin{aligned}
Q L\left(G_{n}, x\right) & =\sum_{u v \in E\left(G_{n}\right)} x^{\left[d_{2}(u)-d_{2}(v)\right]^{2}} \\
& =n x^{[n-n+1]^{2}}+2 n x^{(3-n+1)^{2}}=n x+2 n x^{(n-4)^{2}}, \text { since } n \geq 4
\end{aligned}
$$

4. HELM GRAPHS

The helm graph, denoted by H_{n}, is a graph obtained from W_{n} by attaching an end edge to each rim vertex. Clearly, $\left|V\left(H_{n}\right)\right|=2 n+1$ and $\left|E\left(H_{n}\right)\right|=3 n$. A helm graph H_{n} is shown in Figure 3.

Figure-3: Helm graph H_{n}
Lemma 7: Let H_{n} be a helm graph with $3 n$ edges, $n \geq 3$. Then H_{n} has 3 types of the 2-distance degree of edges as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(H_{n}\right) \mid d_{2}(u)=n, d_{2}(v)=n-1\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(H_{n}\right) \mid d_{2}(u)=3, d_{2}(v)=n-1\right\}, & \left|E_{2}\right|=n . \\
E_{3}=\left\{u v \in E\left(H_{n}\right) \mid d_{2}(u)=d_{2}(v)=n-1\right\}, & \left|E_{3}\right|=n .
\end{array}
$$

Theorem 8: Let H_{n} be a helm graph with $3 n$ edges, $n \geq 4$. Then
(a)
$\operatorname{ML}\left(H_{n}\right)=n^{2}-3 n$.
(b) $Q L\left(H_{n}\right)=n^{3}-8 n^{2}+17 n$.

Proof:

(a) By using Lemma 7 and equation (1), we deduce

$$
\begin{aligned}
\operatorname{ML}\left(H_{n}\right) & =\sum_{u v \in E\left(H_{n}\right)}\left|d_{2}(u)-d_{2}(v)\right| \\
& =n|n-(n-1)|+n|3-(n-1)|+n|(n-1)-(n-1)|=n^{2}-3 n .
\end{aligned}
$$

(b) By using equation (2) and Lemma 7, we derive

$$
\begin{aligned}
Q L\left(H_{n}\right) & =\sum_{u v \in E\left(H_{n}\right)}\left[d_{2}(u)-d_{2}(v)\right]^{2} \\
& =n[n-(n-1)]^{2}+n[3-(n-1)]^{2}+n[(n-1)-(n-1)]^{2}=n^{3}-8 n^{2}+17 n
\end{aligned}
$$

Theorem 9: Let H_{n} be a helm graph with $3 n$ edges. $n \geq 4$. Then
a) $\quad M L\left(H_{n}, x\right)=n x^{1}+n x^{n-4}+n x^{0}$.
b) $\quad Q L\left(H_{n}, x\right)=n x^{1}+n x^{(n-4)^{2}}+n x^{0}$.

Proof:

(a) From equation (3) and by Lemma 7, we have

$$
\begin{aligned}
M L\left(H_{n}, x\right) & =\sum_{u v \in E\left(H_{n}\right)} x^{\left|d_{2}(u)-d_{2}(v)\right|} \\
& =n x^{|n-(n-1)|}+n x^{|3-(n-1)|}+n x^{|(n-1)-(n-1)|}=n x^{1}+n x^{n-4}+n x^{0}
\end{aligned}
$$

(b) From equation (4) and by Lemma 7, we obtain

$$
\begin{aligned}
Q L\left(H_{n}, x\right) & =\sum_{u v \in E\left(H_{n}\right)} x^{\left[d_{2}(u)-d_{2}(v)\right]^{2}} \\
& =n x^{[n-(n-1)]^{2}}+n x^{[3-(n-1)]^{2}}+n x^{[(n-1)-(n-1)]^{2}}=n x^{1}+n x^{(n-4)^{2}}+n x^{0}
\end{aligned}
$$

5. FLOWER GRAPHS

The flower graph $F l_{n}$ is a graph obtained from a helm graph H_{n} by joining each endvertex to the apex of H_{n}. Clearly, $\left|V\left(F l_{n}\right)\right|=2 n+1$ and $\left|E\left(F l_{n}\right)\right|=4 n$. A graph $F l_{n}$ is presented in Figure 4.

Figure-4: Flower graph $F l_{n}$
Lemma 10: Let $F l_{n}$ be a flower graph with $4 n$ edges, $n \geq 3$. Then $F l_{n}$ has 4 types of the 2-distance degree of edges as given below:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=n-5\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=n-2\right\}, & \left|E_{2}\right|=n . \\
E_{3}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=n-5, d_{2}(v)=n-2\right\}, & \left|E_{3}\right|=n . \\
E_{4}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=d_{2}(v)=n-5\right\}, & \left|E_{4}\right|=n .
\end{array}
$$

Theorem 11: Let $F l_{n}$ be a flower graph with $4 n$ edges, $n \geq 3$. Then
(a) $\quad M L\left(F l_{n}\right)=2 n^{2}-4 n$.
(b) $Q L\left(F l_{n}\right)=2 n^{3}-14 n^{2}+38 n$.

Proof:

(a) By equation (1) and by Lemma 10, we have

$$
\begin{aligned}
\operatorname{ML}\left(F l_{n}\right) & =\sum_{u v \in E\left(F l_{n}\right)}\left|d_{2}(u)-d_{2}(v)\right| \\
& =n|0-(n-5)|+n|0-(n-2)|+n|(n-5)-(n-2)|+n|(n-5)-(n-5)|=2 n^{2}-4 n .
\end{aligned}
$$

(b) By using equation (2) and Lemma 10, we obtain

$$
\begin{aligned}
Q L\left(F l_{n}\right) & =\sum_{u v \in E\left(F l_{n}\right)}\left[d_{2}(u)-d_{2}(v)\right]^{2} \\
& =n[0-(n-5)]^{2}+n[0-(n-2)]^{2}+n[(n-5)-(n-2)]^{2}+n[(n-5)-(n-5)]^{2} \\
& =2 n^{3}-14 n^{2}+38 n .
\end{aligned}
$$

Theorem 12: Let $F l_{n}$ be a flower graph with $4 n$ edges. $n \geq 3$. Then
(a) $\quad M L\left(F l_{n}, x\right)=n x^{n-5}+n x^{n-2}+n x^{3}+n x^{0}$.
(b) $\quad Q L\left(F l_{n}, x\right)=n x^{(n-5)^{2}}+n x^{(n-2)^{2}}+n x^{9}+n x^{0}$.

Proof:

(a) From equation (3) and by Lemma 10, we deduce

$$
\begin{aligned}
M L\left(F l_{n}, x\right) & =\sum_{u v \in E\left(F l_{n}\right)} x^{\left|d_{2}(u)-d_{2}(v)\right|} \\
& =n x^{|0-(n-5)|}+n x^{|0-(n-2)|}+n x^{|(n-5)-(n-2)|}+n x^{|(n-5)-(n-5)|} \\
& =n x^{n-5}+n x^{n-2}+n x^{3}+n x^{0} .
\end{aligned}
$$

(b) From equation (4) and by Lemma 10, we obtain

$$
\begin{aligned}
Q L\left(F l_{n}, x\right) & =\sum_{u v \in E\left(F l_{n}\right)} x^{\left[d_{2}(u)-d_{2}(v)\right]^{2}} \\
& =n x^{[0-(n-5)]^{2}}+n x^{[0-(n-2)]^{2}}+n x^{\left[(n-5)-(n-2]^{2}\right.}+n x^{((n-5)-(n-5)]^{2}}=n x^{(n-5)^{2}}+n x^{(n-2)^{2}}+n x^{9}+n x^{0} .
\end{aligned}
$$

6. SUNFLOWER GRAPHS

The sunflower graph $S f_{n}$ is a graph obtained from the flower graph $F l_{n}$ by attaching n end edges to the apex vertex of $F l_{n}$. Then we have $\left|V\left(S f_{n}\right)\right|=3 n+1$ and $\left|E\left(S f_{n}\right)\right|=5 n$. A graph $S f_{n}$ is presented in Figure 5.

Figure-5: Sunflower graph $S f_{n}$
Lemma 13: Let $S f_{n}$ be a sunflower graph with $5 n$ edges, $n \geq 3$. Then $S f_{n}$ has five types of the 2-distance degree of edges as given below:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=3 n-4\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=3 n-2\right\}, & \left|E_{2}\right|=n . \\
E_{3}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=3 n-1\right\}, & \left|E_{3}\right|=n . \\
E_{4}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=d_{2}(v)=3 n-4\right\}, & \left|E_{4}\right|=n . \\
E_{5}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=3 n-4, d_{2}(v)=3 n-2\right\}, & \left|E_{5}\right|=n .
\end{array}
$$

Theorem 14: Let $S f_{n}$ be a sunflower graph with $5 n$ edges. Then
(a)
$M L\left(S f_{n}\right)=9 n^{2}-5 n$.
(b) $Q L\left(S f_{n}\right)=27 n^{3}-42 n^{2}+25 n$.

Proof:

(a) By equation (1) and by Lemma 13, we deduce

$$
\begin{aligned}
M L\left(S f_{n}\right)= & \sum_{u v \in E\left(S f_{n}\right)}\left|d_{2}(u)-d_{2}(v)\right| \\
= & n|0-(3 n-4)|+n|0-(3 n-2)|+n|0-(3 n-1)|+n|(3 n-4)-(3 n-4)| \\
& +n|(3 n-4)-(3 n-2)| \\
= & 9 n^{2}-5 n .
\end{aligned}
$$

(b) By using equation (2) and Lemma 13, we derive

$$
\begin{aligned}
Q L\left(S f_{n}\right)= & \sum_{u v \in E\left(S f_{n}\right)}\left[d_{2}(u)-d_{2}(v)\right]^{2} \\
= & n[0-(3 n-4)]^{2}+n[0-(3 n-2)]^{2}+n[0-(3 n-1)]^{2}+n[(3 n-4)-(3 n-4)]^{2} \\
& +n[(3 n-4)-(3 n-2)]^{2} \\
= & 27 n^{3}-42 n^{2}+25 n .
\end{aligned}
$$

Theorem 15: Let $S f_{n}$ be a sunflower graph with $5 n$ edges. Then
a) $\quad M L\left(S f_{n}, x\right)=n x^{3 n-4}+n x^{3 n-2}+n x^{3 n-1}+n x^{0}+n x^{2}$
b) $\quad Q L\left(S f_{n}, x\right)=n x^{(3 n-4)^{2}}+n x^{(3 n-2)^{2}}+n x^{(3 n-1)^{2}}+n x^{0}+n x^{4}$.

Proof:

(a) From equation (3) and by Lemma 13, we have

$$
\begin{aligned}
M L\left(S f_{n}, x\right) & =\sum_{u v \in E\left(S f_{n}\right)} x^{\left|d_{2}(u)-d_{2}(v)\right|} \\
& =n x^{|0-(3 n-4)|}+n x^{|0-(3 n-2)|}+n x^{|0-(3 n-1)|}+n x^{|(3 n-4)-(3 n-4)|}+n x^{|(3 n-4)-(3 n-2)|} \\
& =n x^{3 n-4}+n x^{3 n-2}+n x^{3 n-1}+n x^{0}+n x^{2} .
\end{aligned}
$$

(b) From equation (4) and by Lemma 13, we obtain

$$
\begin{aligned}
Q L\left(S f_{n}, x\right) & =\sum_{u v \in E\left(S f_{n}\right)} x^{\left[d_{2}(u)-d_{2}(v)\right]^{2}} \\
& =n x^{\left[0-(3 n-4)^{2}\right.}+n x^{[0-(3 n-2)]^{2}}+n x^{[(3 n-4)-(3 n-4)]^{2}}+n x^{[(3 n-4)-(3 n-2)]^{2}} \\
& =n x^{(3 n-4)^{2}}+n x^{(3 n-2)^{2}}+n x^{(3 n-1)^{2}}+n x^{0}+n x^{4} .
\end{aligned}
$$

REFERENCES

1. A.M. Naji, N.D. Soner and I Guman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2 (2017) 99-107.
2. V.R.Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, International Journal of Current Research in Life Sciences, 7(10) (2018) 2783-2791.
3. V.R. Kulli, Sum connectivity leap index and geometric-arithmetic leap index of certain windmill graphs, submitted.
4. V.R. Kulli, On F-leap indices and F-leap polynomials of some graphs, submitted.
5. V.R. Kulli, On augmented leap index and its polynomial of some wheel graphs, submitted.
6. M. O. Albertson, The irregularity of a graph, Ars. Combin. 46 (1997) 219-225.
7. V.R. Kulli, Computation of some minus indices of titania nanotubes, submitted.
8. V.R. Kulli, On the square ve-degree index and its polynomial of certain oxide networks, Journal of Global Research in Mathematical Archives, 5(10) (2018) 1-4.
9. V.R. Kulli, Square reverse index and its polynomial of certain networks, International Journal of Mathematical Archive, 9(10) (2018) 27-33.
10. V.R. Kulli, Square Revan index and its polynomial of certain networks, submitted.
11. Shiladhar, A.M. Naji and N.D.Soner, Leap Zagreb indices of some wheel related graphs, Journal of Computer and Mathematical Sciences, 9(3) (2018) 221-231.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2018, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

