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ABSTRACT 
In this paper, anti fuzzy UP ideals and anti fuzzy UP sub algebras on UP-Algebra are studied. The notions of cartesian 
product and dot product of fuzzy sets are used to derive some properties of UP-Algebra. 
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1. INTRODUCTION 
 
UP Algebra is introduced by IAMPAN.A [4] where UP denotes University of Phayao.Also he derived the concept of 
UP-ideals, UP-subalgebras, congruences and UP homomorphisms in UP-algebras, and investigated some related 
properties of them. He also described connections between UPideals, UP-subalgebras, congruences and UP-
homomorphisms.  In this paper, anti fuzzy UP ideals and anti fuzzy UP sub algebras are studied and proved some 
theorems. 

 
2. PRELIMINARIES 
 
Definition 2.1: An algebra A = (A,·,0) of type (2,0) is called a UP-algebra if it satisfies the following axioms : for any 
x, y, z ∈A, 
(UP-1) (y · z )·((x · y )·(x · z )) = 0, 
(UP-2) 0· x = x, 
(UP-3) x ·0 = 0, and 
(UP-4) x · y = y · x = 0 implies x = y. 

 
Definition 2.2: A non empty subset B of A is called a UP-ideal of A if it satisfies the following properties: 

(1) The constant 0 of A is in B, and 
(2) For any x, y ,z∈ A, x ·(y · z ) ∈ B and y ∈ B imply x · z ∈ B. 

Clearly, A and 0 are up-ideal of A. 
 

Definition 2.3: A subset S of A is called a UP-sub algebra of A if the constant 0 of A is in S, and (S, ·, 0) itself forms a 
UP-algebra. Clearly, A and {0} are UP-subalgebra of A. 

 
Definition 2.4: A fuzzy set f in A is called an anti-fuzzy UP-ideal of A if it satisfies the following properties: for any    
x, y, z ∈ A, 

(1) f (0) ≤ f(x), and 
(2) f (x · z ) ≤ max{f(x ·(y · z )),f (y )}. 

 
Definition 2.5: A fuzzy set f in A is called an anti-fuzzy UP-sub algebra of A if for any x, y ∈ A,  f (x · y) ≤ max{f (x),    
f (y )}. 

 
Definition 2.6: If f is a fuzzy set in a non empty set X, the strongest fuzzy relation on X is µ f :X×X → [0,1] defined by 
µ f(x,y) = max{f(x),g(y)}, for all x, y ∈ X. For x, y ∈ X, we have f (x),f (y ) ∈ [0,1]. Thus µ f(x,y) = max{f (x),f (y )} ∈ [0,1]. 
Hence, µ f  is a fuzzy relation on X . We note that if f  is a fuzzy set in a non empty set X, then f × f = µ f . 
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3. CHARACTERISTICS OF UP ALGEBRA 
 
Theorem 3.1: If f is an anti-fuzzy UP-ideal of A if and only if µ f is an anti-fuzzy UP-ideal of A×A. 
 
Proof: Assume that f is an anti-fuzzy UP-ideal of A. 
 
Let x, y ∈ A×A. 
Then, 

(f×f)(0,0) = max{f(0), f(0)} 
= µ f (0, 0) 
≤ µ f (x, y) 
= max{f(x),f(y)} 
= (f×f) (x, y). 

 
Now, let (x1, x2), (y1, y2), (z1, z2) ∈ A×A. 
Then, 

(f×f)((x1, x2)♦(z1, z2)) = (f×f)(x1 · z1, x2 * z2) 
= max{f(x1 · z1), f(x2 * z2)} 
≤ max{max{f(x1· (y1 · z1)), f(y1)}, max{f(x2 ∗ (y2 ∗ z2)), f(y2}} 
= max{max{f(x1 ·(y1 · z1)), f(x2 ∗(y2 ∗ z2))},max{f(y1), f(y2}} 
= max{(f×f)(x1 ·(y1 · z1), x2 ∗(y2 ∗ z2 )), (f×f)(y1, y2)} 
= max{(f×f)((x1, x2 )♦((y1, y2)♦(z1, z2))),(f×f)(y1, y2)}. 

 
We have µ f  = f × f  is an anti-fuzzy UP-ideal of A × A. 
 
Hence, f × f is an anti-fuzzy UP-ideal of A × A. 
 
Conversely, 
 
Assume that µ f is an anti-fuzzy UP-ideal of A × A. 
 
Since f × f = µ f , 
 
Suppose that f is not an anti-fuzzy UP-ideal of A. 
 
Assume that f(0A) ≤ f(x), for all x ∈ A. 
Then from (2) either f(0A) ≤ f(y), for all y ∈ A or f(0A) ≤ f(x), for all x ∈ A. If f(0A) ≤ f(x) for all x ∈ A, then for all         
x ∈ A, (f × f) (x, 0A ) = max{f(x), f(0A)} = f(x). 

 
Since f × f is an anti-fuzzy UP-ideal of A × A, we have for any x, y, z ∈ A, 

f(x · z) = (f × f) (x · z, 0A) 
= (f × f) (x · z, 0A ∗0A) 
= (f × f) ((x, 0A) ♦ (z, 0A)) 
≤ max{(f × f) ((x, 0B ) ♦ [(x, 0A) ♦ (z, 0A)]), (f × f) (y, 0A)} 
= max{(f × f) (x ·(y · z), 0A ∗ (0A ∗ 0A), (f × f) (y, 0A)} 
= max{(f × f) (x ·(y · z), (f × f) (y, 0A} 
= max{max{f(x ·(y · z)), f(0A)}, max{f(y), f(0A)}} 
= max{f(x ·(y · z)),f(y)}. 

 
Hence, f is an anti-fuzzy UP-ideal of A. 
 
Which is a contradiction. 
 
Assume that f(0A) ≤ f(y), for all y ∈ A. 
 
Then, either f(0A) ≤ f(x), for all x ∈ A or f(0A) ≤ f(y), for all y ∈ A. 
Then for all y ∈ A, 

(f × f) (0A, y) = max{f(0A), f(y)} 
    = f(y). 
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Since f × f is an anti-fuzzy UP-ideal of A × A. We have for any x, y, z ∈ A, 

f(x ∗ z) = (f × f) (0A, x ∗ z) 
= (f × f) (0A ·0A, x ∗ z) 
= (f × f) ((0A, x) ♦ (0A, z)) 
≤ max{f × f) ((0A, x) ♦ [(0A, y) ♦ (0A, z)]), (f × f) (0A, y)} 
= max{(f × f) (0A·(0A ·0A)), (x ∗ (y ∗ z)), (f × f) (0A, y )} 
= max{(f × f) (0A, x ∗ (y ∗ z)), (f × f) (0A, y)} 
= max{max{f(0A), f(x ∗(y ∗ z))}, max{f(x ∗ (y ∗ z)),f(y)} 

Hence, f is an anti-fuzzy UP-ideal of A. 
Which is a contradiction. 
 
Since f × f is not an anti-fuzzy UP-ideal of A × A f(0A) ≤ f(x), for all x ∈ A and f(0A ≤ f(y), for all y ∈ A, there exist       
x, y, z ∈ A, x ’, y ‘, z ‘ ∈ A such that 

f(x · z ) > max{f(x ·(y · z)), f(y )} and f(x ‘  ∗ z ‘ ) > max{f(x ‘ ∗(y ‘  ∗ z ‘ )),f(y)}. 
max{f(x · z ), f(x ‘  ∗ z ‘ )}>max{max{f(x ·(y · z )), f(y )}, max{f(x ‘  ∗ z ‘ ), f(y ‘)}}. 

 
Since f × f is an anti-fuzzy UP-ideal of A × A, we have 

{f(x · z),f(x ‘  ∗ z ‘ )}= (f × f) (x · z, x ‘ ∗ z ‘ ) 
   = f(x · z) ((x, x ‘ ) ♦ (z, z ‘)) 
   ≤ max{(f × f) ((x, x ‘ ) ♦ [(y, y ‘ ) ♦ (z, z ‘ )]), (f × f) (y, y ‘ )} 
   = max{(f × f) (x ·(y · z )), f(x ‘ ∗(y ‘ ∗ z ‘  )), (f × f) (y, y ‘ ) 
   = max{max f(x ·(y · z )), f(x ‘  ∗(y ‘  ∗ z ‘ ))}, max{f(y),f(y ‘ )}}. 

        max{f(x· z), f(x ‘ ∗ z ‘ )}≮ max{max{f(x ·(y · z)), f(y)}, max{f(x ‘ ∗(y ‘ ∗ z  ))}} 
Which is a contradiction. 
 
Similarly, by (1), 
 
If f(0A) ≤ f(y), for all y ∈ A, we have a contradiction. 
 
Hence, either f is an anti-fuzzy UP-ideal of A. 

 
Theorem 3.2: If f is an anti-fuzzy UP-sub algebra of A if and only if µ f  is an anti-fuzzy UP-sub algebra of A × A. 
 
Proof: Assume that f is an anti-fuzzy UP-subalgebra of A. 
 
Let (x1, x2), (y1, y2) ∈ A×A. 
Then, 

(f × f) ((x1, x2) ♦ (y1, y2)) = (f × f) (x1 · y1, x2 ∗ y2) 
= max{f(x1 · y1), f(x2 ∗ y2)} 
≤ max{max{(f(x1),f(y1}, max{(f(x2), f(y2)}} max{max{(f(x1), f(y2}, max{(f(y1), f(y2)}} 
= max{(f × f) (x1, x2), (f × f) (y1, y2)}. 

Hence, µ f = f × f is an anti-fuzzy UP-sub algebra of A × A. 
 
Conversely, 
 
Assume that µ f  is an anti-fuzzy UP-sub algebra of A × A. 
 
Since f × f= µ f, Suppose that f is not an anti-fuzzy UP-sub algebra of A. 
 
Then there exist x, y ∈ A and a, b ∈ A such that f(x · y) > max{f(x), f(y)} and f(a∗b) > max{f(a), f(b)} 
 
Thus max{f(x · y), f(a∗b)}>max{max{f(x), f(y)}, max{f(a), g(b)}}. 
 
Since, f×f is an anti- fuzzy UP-sub algebra of A×A, we have  

max{f(x · y ), f(a∗b)}= (f × f) ((x, a) ♦ (y, b))  
 ≤ max{(f × f) ((x, a),(f × f) (y, b)}  
 = max{max{f(x), f(a)}, max{f(y), f(b)}} 
 = max{max{f(x), f(y )}, max{f(a), f(b)}}.  

Thus, max{f(x · y), f(a∗b)}≯ max{max{f(x), f(y)}}, max{f(a), f(b)} 
Which is a contradiction. 
 
Hence, either f is an anti-fuzzy UP-sub algebra of A. 
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4. CONCLUSION 
 
In this paper, anti fuzzy UP ideals and anti fuzzy UP sub algebras are studied. The characteristics of UP-Algebra and 
therelation between Anti fuzzy UP ideal and anti fuzzy UP sub algebra are explained and related theorems proved. In 
future more theorems can be derived in this topic. 
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