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ABSTRACT 
The minimum dimensions of the real representations of the three-dimensional Lie algebras defining the maximal 
transitive groups on the basic three-geometries are given. The vector fields on Nil geometry are used to define a 
differential operator, and the kernel is found. The dynamics of Ricci solitons on this manifold and the embedding in 
four-dimensions are described. 
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1. INTRODUCTION 
 
The geometrization of three-dimensional manifolds has been developed from the fundamental theorem on the 
enumeration of geometries with compact models and point stabilizer groups [1]. The basic three-geometries have 
characteristic isometry groups, and their realizations will be considered. The Bianchi Lie algebras have nontrivial 
commutation relations and represent all except one of the basic three-geometries.   Special consideration will be given 
to the algebras for the Nil and Sol geometries. 
 
The Lie algebras are demonstrated to have a real representation in three dimensions. The solutions to the equations 
derived from the commutators are found for the Nil and Sol algebras.  Then the vector fields in R3 that are tangent to 
the manifold are used to define a differential operator.  The kernel of this operator is determined and the relation to 
other operators is established through the characteristics of the algebra. These results are established for the Nil 
geometry.   
 
The Euclidean and Lorentz solitons are described. The embedding of these solitons in four dimensions is then 
considered.  It is found that the condition of fixed volume with Euclidean signature does not allow such an embedding.   
If the manifold is noncompact such as H4, the embedding is not allowed if the volume of the soliton increases too 
rapidly with time. The necessity of introducing a Lorentz signature then would follow. 
 
2. COMMUTATION RELATIONS OF THREE-DIMENSIONAL LIE ALGEBRAS 
 
The commutators of the Nil algebra are 

[e1, e2] = e3 
[e1, e3] = 0                                                                                                                                                        (2.1)                                                                                         
[e2, e3] = 0      

Defining       

e1 =  11 12

21 22

a a
a a
 
 
 

          

e2 =  11 12

21 22

b b
b b
 
 
 

                                                                                                                                                              (2.2) 
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e3 = 11 12

21 22

c c
c c
 
 
 

                                 

the equations 
a12b21 - a21b12 = c11 
a11b12 + a12b22 - a12b11 - a22b12 = c12 
a21b11 + a22b21 - b21a11 - b22a12 = c21 
a21b12 - b21a12 = c22 
a12c21 - c12a21 = 0                                                                                                                                               (2.3) 
a11c12 + a12c22 - a12c11 - a22c12 = 0 
a21c11 + a22c21 - a11c21 - a21c22 = 0 
a21c12 + a12c22 - a12c21 - a22c12= 0 
b12c21 - b21c1 2 = 0 
b11c12 + b12c22 - b12c12 - b22c12 = 0 
b21c11 + b22c21 - b11c21 - b21c21 = 0 
b21c12 + b12c22 - b12c21 - b22c12 = 0. 

There are no real solutions to these equations since a contradiction arises when all of the elements of the matrices for  
e2 or e3 are required to vanish. The three-dimensional representation of the Heisenberg group is 

e1 = 

0 1 0
0 0 0
0 0 0

 
 
 
  

 

e2 = 

0 0 0
0 0 1
0 0 0

 
 
 
  

                                                                                                                                            (2.4) 

e3 = 

0 0 1
0 0 0
0 0 0

 
 
 
  

 

                               
Theorem 2.1: There exists no real two-dimensional representation of the Sol algebra. 
 
Proof: 
 
For the algebra with commutation relations 

[e1, e2]  = 0 
[e1, e3]  = -e2                                                                                                                                                     (2.5) 
[e2, e3] = e1 

Let 

e1 = 1 1

1 1

a b
c d
 
 
 

 

e2 = 2

2 2

2a b
c d
 
 
 

                                                                                                                                              (2.6) 

e3 = 3 3

3 3

a b
c d
 
 
 

 

Then 

[e1, e2]  = 1 2 2 1 1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1 1 2 2 1

a a
a a

b c b c b b d b b d
c d c c d c c b c b

− + − − 
 
 − − − +

 

[e2, e3] = 2 3 3 2 2 3 2 3 3 2 3 2

2 3 2 3 3 2 3 2 2 3 3 2

a a
a a

 b c b c b b d b b d
c d c c d c c b c b

− + − 
 


−
+ − − −

                                                       (2.7) 

[e3, e1] = 3 1 1 3 3 1 3 1 1 3 1 3

3 1 3 1 1 3 1 3 3 1 1 3

a a
a a

 b c b c b b d b b d
c d c c d c c b c b

− + − 
 


−
+ − − −
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yielding the equations 

b1c2 - b2c1 = 0 
a1b2 + b1d2 - a2b1 - b2d1 = 0 
c1a2 + d1c2 - c2a1 - d2c1 = 0 
b2c3 - b3c2 = 0 
a2b3 + b2d3 - a3b2 - b3d2 = b1 
c2a3 + d2c3 - c3a2 - d3c2 = c1                                                                                                                                                                                          (2.8) 
b2c3 - b3c2 = - d1 
b3c1 - b1c3 = a2 
a3b1 + b3d1 - a1b3 - b1d3 = b2 
c3a1 + d3c1 - c1a3 - d1c3 = c2 
c3b1 - c1b3 = d2. 

 
Setting a1= -d1 and a2 = -d2, it follows that  

b1c2 = b2c1 
a1b2 = a2b1                                                                                                                                                                                                                    (2.9) 
a1c2 = a2c1. 

 
Then the first two generators are 

1 1

1 1

a
-a
b

c
 
 
 

                                                                                                                                                    (2.10) 

1 1

1 1

a
- a

b
c

λ λ
λ λ
 
 
 

 

 
By the commutation relations 

2λ a1 b3 + λ b1d3 – λ a3 b1 = b1                                                                                                                                                                                         (2.11) 
- (2a1b3+b1d3-a3b1) =  λ b1. 

 
Consequently, λ2 = - 1 and λ ± i.  There exists no real two-dimensional generators of the generators of the Sol algebra.   
                                                    
Theorem 2.2:  There exists a three-parameter set of real three-dimensional representations of the Sol algebra. 
 
Proof.┌⌋⌋ 
Let  

e1 = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 

e2 = 
11 12 13

21 22 23

31 32 33

b b b
b b b
b b b

 
 
 
  

                                                                                                                                                   (2.12) 

e3 = 
11 12 13

21 22 23

31 32 33

c c c
c c c
c c c

 
 
 
  

 

                                
The commutation relations produce the following equations for aij, bij and cij 

a11b11+a12b21+a13b31-b11a11-b12a21-b13a31 = 0 
a21b11+a22b21+a23b31-b21a11-b22a21-b23a31 = 0 
a31b11+a32b21+a33b31-b31a11-b32a21-b33a31 = 0  
a11b12+a12b22+a13b32-b11a12-b12a22-b13a32 = 0 
a21b12+a22b22+a23b32-b21a12-b22a22-b23a32 = 0 
a31b12+a32b22+a33b32-b31a12-b32a22-b33a32 = 0     
a11b13+a12b23+a13b33-b11a13-b12a23-b13a33 = 0 
a21b13+a12b23+a13b33-b11a12-b12a23-b13a33 = 0 
a31b13+a32b23+a33b33-b31a13-b32a23-b33a33 = 0                                                                                                   (2.13) 
a11c11+a12c21+a13c31-c11a11-c12a21-c13a31 = -b11 
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a21c11+a22c21+a23c31-c21a11-c22a21-c23a31 = -b21 
a31c11+a32c21+a33c31-c31a11-c32a21-c33a31 = -b31 
a11c12+a12c22+a13c32-c11a12-c12a22-c13a32 = -b12 
a21c12+a22c22+a23c32-c21a12-c22a22-c23a32 = -b22 
a31c12+a32a22+a33c32-c31a12-c32a22-c33a32 = -b32 
a11c13+a12c23+a13c33-c11a13-c12c23-c13a33 = -b13 
a21c13+a22c23+a23c33-c21a13-c22a23-c23a33 = -b23 
a31c13+a32c23+a33c33-c31a13-c32a23-c33a33 = -b33 

The homogeneous equations can be satisfied by bij= λ aij for some constant λ. If the relations had been linearly 
independent, giving nine equations for nine unknowns, this would be the only solution. However, it is possible to select 
a set of four elements from {a12, a13, a21, a31, b12, b13, b21, b31} such that the first relation is valid trivially. 
 
For example, let a12, b31, a21, b12 equal zero. The first expression vanishes, and remaining homogeneous equations are 

a22b31 - b21a11 = 0 
a31b11 + a32b21 - b32a21 - b33a31 = 0 
a11b12 + a13b32 - b12a22 - b13a32 = 0   
a23b32 - b23a32 = 0                                                                                                                                            (2.14) 
a31b12 + a32b22 - b32a22 - b23a32 = 0 
a13b33 - b11a13 - b12a23 - b13a33 = 0 
a22b23 - b32a23 = 0. 

 
The fourth and eighth equations are identical. Setting a11=a22, a12b32=0 follows from the third equation. 
 
If a13=0, b12a23=0.  Let b12=0.  Then 

a32b22  - b32a22 - b33a32 = 0 
a11b33 - b11a13 = 0                                                                                                                                            (2.15) 
b11 = b33 
a32b21 = 0 

Let b21 = 0 and 
a32b22 - b32a22 - b33a32 = 0 
b13a33 = 0                                                                                                                                                        (2.16) 
a22b23 + a23b33 - b22a23 - b23a33 = 0 

 
One solution to Eq. (2.16) is 

a32 = 0       b32=0                                                                                                                                             (2.17) 
a22 = a33     a23=b13=b23=0. 

 
The matrices representing $e_1$ and $e_2$ would have the form 
$$\left(\matrix{ a_{11} & 0 & 0 
                        \cr 
                   0  & a_{22} & 0  
                         \cr 
                 a_{31} & 0 & a_{22} 
                         \cr}\right)~~~~~~~~~~\left(\matrix{ b_{11} & 0  & 0 
                                                                   \cr 
                                                              0  & b_{22}  & 0 
                                                                   \cr 
                                                              0 & b_{32}  & b_{11} 
                                                                    \cr}\right) 
\eqno(2.18) 
$$ 
 
The next set of conditions is 

-c13a31 = -b11 
(a22-a11)c21-c23a31-b21 = 0 
a31c11+a22c31-c31a11-c33a31 =-b31 = 0 
a11c12-c12a22-c13a32 =-b12 
a31c12+a22c32-c32a22  = -b32                                                                                                                               (2.19) 
a11c13-c13a22 = -b13 = 0 
a22c23-c23a33 = -b23  = 0 
a33c13 = -b13  = -b11 

Then 
b12c21 + b13c31 - c12b21 - c13b31 = 0 = a11.                                                                                                          (2.20) 
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The above set of conditions is abbreviated to 

c13a31 = b11 
a22c21-c23a31 = 0      a31c23=0      c23=0 
a31c11+a22c31-c33a31= 0      c11=c33                                                                                                                  (2.21) 
c12a22 =b21 = 0      a22=0 
a31c12 = -b32 
c13a22 = 0 
a22c13 = -b11 = 0 

 
The first two matrices now have the form 

31

0 0 0
0 0 0

a 0 0

 
 
 
  

                

32

0 0 0
0 0 0
0 0b

 
 
 
  

                                                                                                                                                                                                                                                                                                         

 
The subsequent relations yield 

b32c21 = a31 
-c13b32 =a12 = 0                 c13 = 0 
-c23b32 = a22 = 0                c23 = 0 
b32(c22-c33) = a32  = 0        c22=c33                                                                                                                  (2.23) 
a13 = a23 = 0 
b32 c23 = a33 = 0                 c23 = 0 

 
The elements of the matrix for e3 are 

11 12

21 11

31 32

0
0
0

c c
c c
c c

 
 
 
  

                                                                                                                                            (2.24) 

 
The commutators [e1, e3] = - e2 and [e2, e3] = e1 yield the equalities 

a31 = b32c21 
a31c12 = -b32.                                                                                                                                                    (2.25) 

 
A set of matrices which satisfies the commutator relations of the Sol algebra 

0 0 0
0 0 0
1 0 0

 
 
 
  

      

0 0 0
0 0 0
0 1 0

 
 
 
  

       
11

11

31 32 11

1 0
1 0

 c
c

c c c

− 
 
 
  

                                                                                 (2.26) 

provides a realization of the three-dimensional geometry. Since c11, c31 and c32 have been left undetermined, there is a 
three-parameter set of generators.                    
 
Since more conditions are derived from the commutation relations of the three-dimensional Lie algebras of the other 
basic geometries, the minimum dimension for a real representation again will be three.  
 
It follows that the Lie algebra generators can be regarded as vector fields in R3.  Consider, for example, the Nil algebra 
with the generators 

e1 = ∂/∂y - x ∂/∂z 
e2 = ∂/∂x                                                                                                                                                         (2.27) 
e3 = ∂/∂z. 

 
Theorem 2.3: The solutions to e1e3  Φ =  (∂/∂y -x ∂/∂z) ∂/∂z Φ=0 invariant under the isometry group in the Nil 
geometry form a subset of the space of functions  f(ŷ+ẑ)+g(ŷ- ẑ) where 

ŷ = ( 2/ (x2+ √ x4+4 ) 1/ 2  (1/N1 y+ 1/ N2z ) 
ẑ = (2/(√ x4+4-x2)1/2 (1/N1(1-  (x2+ √ x4+4 )/2)y+ 1/ N2 (1-(x2- √ x4+4)/2)z) 
N1 = [1+1/ x2 (1-(x2+√ x4+4)/2))2]1/2 

N2 = [1+ 1/x2 (1-(x2+√ x4+4)/2)2)2]1/2. 
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Proof: 
Since [e1, e3]=0,  (e1-e3)(e1+e3)=(e1+e3)(e1-e3) and 

(( ∂/∂y-x ∂/∂z)- ∂/∂z))((∂/∂y-x ∂/∂z)+ ∂/∂z) = (( ∂/∂y-x ∂/∂z)+ ∂/∂z)((∂/∂y-x ∂/∂z)- ∂/∂z) 
                                                                      = ∂2/∂y2-2x ∂2 /∂y ∂z+(x2-1) ∂2/∂z2                                                (2.28) 

                                                                      = (∂/∂y ∂/∂z)’ 2 1
1 x
x x

−
− −
 
 
 

 
/
/

y
z

 
 


∂
∂ ∂ 

∂
                                                                                                                                                                        

The eigenvalues of the matrix 2 1
1 x
x x

−
− −
 
 
 

 are 

 
λ1=(x2+√x^4+4)/2 and λ2 = (x2-√x^4+4)/2 with eigenvector 

v1= 1/N1    ( )2 41/   1   

1

4 /( 2x x x− + √

 
 
 +  

    

                                                                    
N1= [1+1/x2 (1-(x2+√x4+4)/2 )2]1/2                                                                                                                                                                       (2.29) 
 

v2= 1/ N2   ( )2 41/   1   

1

4 /( 2x x x− − √

 
 
 +  

            

                                                                 
N2= [1+1/x2 (1-(x2-√x^4+4)/2 )2]1/2. 
 
The diagonalized differential operator is given by                      

(x2+√ x4+4)/2 ∂/∂y' 2 +  (x2  -  √ x4+4 )/2  ∂/∂z'2 

∂/∂y' = 1/N1 ∂/∂y+1/N2   ∂/∂z                                                                                                                         (2.30) 
∂/∂z' = 1/N2 1/x (1 – (x2+√x^4+4)/2) ∂/∂y + 1/N2 1/x (1 – (x2 - √x^4+4)/2) ∂/∂z 

 
Suppose that 

ŷ = (2/(x2+√x^4+4))1/2  y’                                                                                                                               (2.31) 
ẑ = (2/(√x^4+4-x2)1/2  z' 

 
The solutions to  

(∂2/ ∂ŷ2 - ∂2/ ∂ẑ2 ) Φ(ŷ,ẑ) = 0                                                                                                                          (2.32) 
         are f(ŷ+ẑ)+g( ŷ- ẑ).  Over the space of solutions, the vector field representation of (e1-e3) (e1+e3) is zero. 
 
Similarly, 

[e1
2, e2] = e1[e1, e2]+[e1,e2]e1 = e1e3+e3e1 = 2e1e3                                                                                             (2.33) 

 
The vanishing of e1e3 therefore vanishes from that of e1

2. By the commutator,  
[[e1

2, e2],e2]=2[e1e2,e2]=2e1[e3,e2]+2[e1,e2]e3=2e3
2                                                                                          (2.34) 

 
the vanishing of e3

2 also vanishes from the vanishing of  e1
2. 

 
Since e1

2 ∊ To(Nil) at the origin o, 
          e1

2= α e1+β e2+ γ e3                                                                                                                                              (2.35) 
 
Since 

[e1
2, e2] = α [e1, e2] = α e3,                                                                                                                              (2.36) 

it would follows that 2e1e3= α e3 and α=0.  The vanishing of [e1
2, e1] = β[e2, e1] = - βe3 yields β=0.   Then  

e1
2 e2   = γ e3.  However, e1e2= δe3.  Then 

e1(e2- δ/γ e1)=0                                                                                                                                               (2.37) 
for  γ≠0. 

 
Since e1 and e2 are not proportional, γ = 0, and e1

2 = 0.     
 
Finally, let e2

2= α' e1+β' e2+ γ'e3                                                                                                                                   (2.38) 
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The commutators 

[e2
2, e1] = β' [e2, e1] = β' e3                                                                                                                                                                                                 (2.39) 

[e2
2, e1] = e2[e2,e1]+[e2,e1]e2 = -e2e3+(-e3)e2=-2e2e3 

require β' = 0.  By the vanishing of [e2
2, e2] = α'[e1, e2]= α' e3=0 and α'=0.  Then e2

2= γ' e3 and 
(e1- δ /γ' e2) e2=0.                                                                                                                                            (2.40) 

for γ' ≠ 0. Then γ' must be set equal to zero and e2
2 = 0.  The generators of the Nil algebra are nilpotent of order 2. Since 

e1e3 is zero if (e1+e3) (e1-e3) vanishes by the commutation relations, the solutions to (∂/∂y – x ∂/∂z)∂/∂z Φ(y, z) = 0 
invariant under the Nil group must form a subset of the solutions to (e1

2-e3
2)Φ(y, z) = 0 given by {f(ŷ+ẑ) +g( ŷ- ẑ)}.                                       

      
3. THE LIE ALGEBRAS OF BASIC FOUR-GEOMETRIES 
 
The transformation groups of the basic four-geometries may be described similarly to the Bianchi classification of 
homogeneous three-dimensional geometries [2]. The commutators of the vector fields spanning these spaces would 
follow from the relations  

[e1, e2] = c123e3+c124e4 
[e1, e3] = c132e2+c134e4 
[e2, e3] = c231e1+c234e4                                                                                                                                        (3.1) 
[e1, e4] = c142e2+c143e3 
[e2, e4] = c241e1+c243e3 
[e3, e4] =c341e1+c342e2. 

Then a set of double commutators is 
[[e1, e2], e3] = c124 [e4, e3] = -c124(c341e1+c342e2) 
[[e2, e3], e1] = c234 [e4, e1] = -c234(c142e2+c143e3)                                                                                               (3.2) 
[[e3, e1], e2] = -c134 [e4,e2] = c134(c241e1+c243e3) 

 
By the Jacobi identity. 

-c124 (c341e1+c342e2)-c234(c142e2+c143e3)+c134(c241e1+c243e3) 
          = - (c124c341-c134c241)e1- (c124c342+c234c142)e2 - (c234c143-c134c243) e3                                                                              (3.3) 
          = 0 

or 
c124c341 = c134c241 
c124c342 = -c234c142                                                                                                                                              (3.4) 
c234c143 = c134c243. 

 
Similarly, it follows from the commutators 

[[e1, e2], e4] = c123[e3, e4] = c123(c341e1+c342e2) 
[[e4, e1], e2] = - c143[e3, e2] = c143(c231e1+c234e4)                                                                                                (3.5) 
[[e2, e4], e1] = c243[e3, e1] = -c243(c132e2+c134e4) 

or 
c123(c341e1+c342 e2)+c143(c231e1+c234e4) - c243(c132e2+c134e4) = 0,                                                                       (3.6)                                                                   

 
which requires the inequalities 

c123c341 = - c143c231 
c123c342 = c243c132                                                                                                                                                 (3.7) 
c143c234 = c243c134. 

 
The commutation relations 

[[e1, e3], e4] = c132[e2, e4] = c132(c241e1+c243e3)                                                                                                  (3.8) 
[[e4, e1], e3] = - c142[e2, e3] = - c142(c231e1+c234e4) 
[[e3, e4], e1] = c342[e2, e1] = - c342(c123e3+c124e4) 

satisfy the Jacobi identity if  
(c132c241-c142c231)e1+(c132c243-c234 c123)e3-(c142c234+c342c124)e4 = 0                                                                     (3.9) 

or 
c132c241 = c142c231 
c132c243 = c342c123                                                                                                                                              (3.10) 
c142c234 = - c342c124. 

 
The commutators 

[[e2, e3], e4] = c231[e1, e4] = c231(c342e2+c143e3) 
[[e4, e2], e3] = - c241[e1,e3] = - c241(c132e2+c134e4)                                                                                            (3.11) 
[[e3, e4], e2] = c341[e1, e2] = c341(c123e3+c124e4) 

yield the equality 
(c231c342-c241c132)e2 + (c231c143+c341c123)e3 + (c341c124-c241c134)e4 = 0                                                                (3.12) 



Simon Davis / Realizations of Three-Dimensional Group Actions / IRJPA- 9(1), Jan.-2019. 

© 2019, RJPA. All Rights Reserved                                                                                                                                                                       8 

or 
c231c342 = c241c132 
c231c143 = - c341c123                                                                                                                                           (3.13) 
c341c124 = c241c134. 

 
These conditions will be satisfied by the structure constants of the Lie algebra of the basic four-geometry.   
 
Let γαβ be the metric of a hypersurface in a four-dimensional Bianchi cosmology and 

Παβμν=cρ
αβ  cσ

μν γρσ                                                                                                                                           (3.14) 
Then the quadratic forms [3][4] 

q1 = Παβμν  γαμ  γβν                                                                                                                                                                                                                       (3.15) 
q2= cα

βκ  cβ
α λ  γκλ 

can be defined. Diagonalizing the positive-definite metric γρσ, q1> 0, The structure constants determine the compactness 
of the three-dimensional isometry group, since gκλ= cα

βκ cβ
αλ is negative-definite for compact semisimple groups, and   

q2 = gκλ  γκλ  < 0. 
 
The reduction to three-dimensional commutation relations is sufficient to ensure the embeddability of the basic three-
geometries in the basic four-geometries. The condition of inclusion in the group SO(9) [5] will place further constraints 
on the Lie algebra.  Nevertheless, those four-geometries that do satisfy can be projected to basic three-geometries with 
an isometry group which is a subgroup of G2 [6] can be included in the path integral for quantum gravity [7]. 
 
4. RICCI FLOW ON NIL GEOMETRY 
 
A Ricci soliton will be described on the Nil geometry. 
Let  

g(t) = A(t)(θ1)2 + B(t)( θ2)2 + C(t)( θ3)2 

θ1= dy                                                                                                                                                               (4.1) 
θ2 = dx 
θ3 = xdy+dz 

 
Suppose that 

(ϑ1)2 = A(t)(θ1)2 

(ϑ2 )2 = B(t)(θ2)2                                                                                                                                                (4.2) 
(ϑ3)2 = C(t)(θ3)2 

 
such that 

g(t) = (ϑ1)2 + (ϑ2 )2 + (ϑ3)2.                                                                                                                                (4.3) 
 
By evaluating covariant derivatives with respect to the frame 

F1=1/√A(t) e1= 1/ √A(t)  (∂/∂y-x ∂/∂z) 
F2=1/√B(t) e2= 1/ √B(t)  ∂/ ∂x                                                                                                                          (4.4) 
F3= 1/ √C(t) e3= 1/ √C(t)  ∂/∂z 

 
Since [F1,F2]= 1/ √(A(t)B(t)) e3= √C(t)/(A(t)B(t))F3, 

R11(g(t)) = -1/2 C(t)/B(t) 
R22(g(t)) = -1/2 C(t)/A(t)                                                                                                                                  (4.5) 
R33(g(t)) = ½ C(t)2/A(t)B(t). 

 
The Ricci flow equations would be 

∂/∂t  g(t)11 =  C(t)/B(t) 
∂/∂t g(t)22  = C(t)/A(t)                                                                                                                                       (4.6) 
∂/∂t g(t)33  = - C(t)2/(A(t)B(t)). 

Then 
d/dt(A(t)B(t)C(t)) = B(t)C(t) dA(t)/dt +A(t)C(t)dB(t)/dt + A(t)B(t)dC(t)/dt 
                              = C2(t)                                                                                                                                 (4.7) 

 
When C(t) increases in magnitude, A(t)B(t)C(t) → ∞. 
 
If A(t) → -A(t) for the Lorentzian metric -(ϑ1)2 + (ϑ2 )2 + (ϑ3)2, 

d/dt (A(t)) =-C(t)/B(t) 
d/dt(B(t))= -C(t)/A(t)                                                                                                                                       (4.8) 
d/dt (C(t))=C2(t)/A(t)B(t) 
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and 
d/dt (A(t)B(t)C(t)) = -C2(t).                                                                                                                              (4.9) 

by combining the three equations [8].  When C(t) → ∞, A(t)B(t)C(t) → 0, and the Lorentzian soliton [9] decreases in 
volume with time. 
 
The expansion of the Euclidean Ricci soliton prevents its embedding within a four-sphere of fixed radius.  However, if 
the time coordinate occurs in the line element with the opposite sign, then the ambient space-time may be de Sitter 
space.  The Euclidean Ricci soliton might be embedded in the hyperbolic space H4.  A matching of the metrics 

dsNil soliton
2=A2(t)(dy+xdz)2+B2(t)dx2+C2(t)dz2                                                                                                                                                  (4.10) 

dsH4 2 |constant η=1/η2[dη2 +dx2+dy2 +dz2] |constant η 

 
The line element for the soliton in the Nil geometry equals 

dsNil soliton
2
 =  [ dy dz ]  

( ) ( )
( ) ( ) ( )

2 2

2 2 2 2 
A t xA t
xA t A t x C t

 
 
 +

  
dy
dz
 
 
 

                                                               (4.11)                                   

                                                                                                                                                                                                                                                                                      
The eigenvalues of the matrix are 

λ1 = (A2(t)(1+x2) + C2(t))1/2 [1+[1+(4x2 A4(t))/(A2(t)(1+x2) + C2(t))2]1/2]                                                      (4.12) 
λ2 = (A2(t)(1+x2) + C2(t))1/2 [1-[1+(4x2 A4(t))/( A2(t)(1+x2) + C2(t))2]1/2] 

and the eigenvectors are            

v1 = 21

12

v
v
 
 
 

            

    = 1/N1 '
( )( ) ( )( ) [ [ ( )( ) ( )( ) ( )( )22 2 2 2 4 2 2 2 1/  2 1/  1/ 2  1  1 1 4 /  1

1

]x x A t x C t x A t A t x C t− + + +

 
 
 + + + + 

     

v2 = 21

22

v
v
 
 
 

 

      = 1/N1' ( )( ) ( )( ) [ [ ( )( ) ( )( ) ( )( ) ] ]2 2 2  1 /  1 / 2  1  1 1 4 2 4 /  2 1 2 2 2 1 /  2 

1

x x A t x C t x A t A t x C t− + + + − + + +

 
 
  

                 

N1' = [1+ [-1/x+1/2x (A2(t)(1+x2)+C2(t)) [1+[1+(4x2A4(t))/(A2(t)(1+x2)+C2(t))2]1/2 ]2]                                              (4.13) 
N2'= [1+[-1/x+1/2x (A2(t)(1+x2)+C2(t)) [1-[1+(4x2 A4(t))/(A2(t)(1+x2)+C2(t))2]1/2]2 

 
Since 

1

2

T

T

v
v
 
 
 

 
( ) ( )
( ) ( ) ( )

2 2

2 2 2 2

 A t xA t
xA t A t x C t
 
 
 +

 [ ]1 2v v 11 1 1 2 1 2

21 2 1 2  2 2  
0

0 

T T

T T

v v v v
v v v v

λλ λ
λλ λ

   
= =   

  
                 (4.14)                           

( ) ( )
( ) ( ) ( ) [ ]

2 2
1 1

1 22 2 2
2 2

 
   

0
0

T

T

A t x A t v
v v

xA t A t x C t v
λ

λ
    

=    
  + 

                                                                 (4.15)                                                                                                                                                                                                         

Then 

[ ]dy dz [ ]1 2v v 1

2

 0
0
λ

λ
 
 
 

 1

2

T

T

v
v
 
 
 

dy
dz
 
 
 

[ ]' 'dy dz= 1

2

 0
0
λ

λ
 
 
 

'
'

dy
dz
 
 
 

                                    (4.16)                                                                                                                                                              

with 
dy' = dy v11+dz v21                                                                                                                                                                                                                    (4.17) 
dz' =dy v12 +dz v22 

Then 
ds2 = B2(t)dx2+ λ1(t)dy'2+ λ2 (t) dz'2.                                                                                                               (4.18) 

Let 
ŷ(t) = λ1

1/2(t)/B(t) y'                                                                                                                                       (4.19) 
ẑ(t)  = λ2

1/2(t)/B(t) z' 
such that 

ds2=B2(t) ( dx2 + dŷ2 + dẑ2 )                                                                                                                            (4.20) 
 
Choosing η0 = constant=1/B(t0), the Euclidean Ricci soliton at time t0 may be embedded in H4. For a continuous range 
o f valu es o f η and  t, with η = 1/B(t), there is a continuous embedding of this soliton in a constant η slice of the 
hyperboloid. 



Simon Davis / Realizations of Three-Dimensional Group Actions / IRJPA- 9(1), Jan.-2019. 

© 2019, RJPA. All Rights Reserved                                                                                                                                                                       10 

 
The spatial coordinates expand, however, only at a linear rate. Given a linear increase in C(t), the equation d/dt 
(A(t)B(t)C(t)) = C(t)2 would allow a linear increase in A(t) and B(t). By contrast, the Lorentz Ricci soliton could be 
embedded in a four-manifold of fixed volume if its signature is changed. It would be necessary to have the time 
coordinate to have the same sign as two of spatial coordinates in the signature.  Then the interpretation of the remaining 
spatial coordinate reflects an interchange with time, except that forward time then would correspond to a decrease in 
this direction. 
 
5. CONCLUSION 
 
The requirement of three dimensions for a real representation of the Lie algebras determining the symmetry groups of 
the basic three-geometries indicates that a projection to two dimensions must introduce complex numbers. The 
transition from Poisson brackets of classical variables to quantum commutation relations requires the imaginary unit.   
Therefore, the compatibility of the transition from two to three dimensions with geometric group invariance may 
require quantum theory.    
 
The embedding of the Ricci flow, which have determined the diffeomorphism classes of three-manifolds, in four 
dimensions appears to require a change in the signature if the volume of the solition exceeds certain bounds. The 
physical theories in three dimensions, therefore, areentirely described in four dimensions under certain conditions such 
as Lorentz signature of the manifolds. 
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