POLARITY IN SIGNED ORDER - PRESERVING AND ORDER - DECREASING SEMIGROUP
 ${ }^{1 *}$ MOGBONJU, M.M. AND ${ }^{2}$ OGUNLEKE, I.A.

${ }^{1}$ Department of Mathematics University of Abuja. P.M.B. 117. F.C.T. Nigeria.
${ }^{2}$ Alvan Ikoku Federeal College of Education.
Department of Mathematics, P.M.B. 1033 Owerri, Imo State Nigeria.
(Received On: 15-06-19; Revised \& Accepted On: 26-06-19)

Abstract

Let α be a transformation from the set $X_{n} \rightarrow X_{n}^{*}$, then the signed (partial) transformation semigroup is defined in the $\alpha: \operatorname{dom}(\alpha) \subseteq X_{n} \rightarrow \operatorname{Im}(\alpha) \subset X_{n}^{*}$ where $X_{n}=\{1,2,3, \cdots, n\}$ and $X_{n}^{*}=\{-n, \cdots,-3,-2 .-1.0,1,2,3, \cdots, n\}$. The paper aimed at investigate the polarity of elements in these semigroup.

Keywords: polarity, semigroup, signed order - preserving semigroup, signed order decreasing - semigroup.

INTRODUCTION AND PRELIMINARY

[4] studied the semigroups of order - preserving and order - preserving of a finite set $X_{n}=\{1,2,3, \cdots\}$. A map $\alpha: X \rightarrow X_{n}^{*}$ is called order - decreasing, D_{n} of all i in $X, i \alpha \leq i$. The semigroups of all order - decreasing maps is of cardinality n !. A general study of D_{n} was initiated by [17]. A mapping is called order - preserving if for all i, j in $\{1,2,3, \cdots\}, i \leq j \Rightarrow i \alpha \leq \alpha j$ where $i \alpha, \alpha j \in \operatorname{dom}(\alpha)$. The semigroup of order - preserving full transformation of X_{n} will be denoted by O_{n}. [4] showed that the order of $\left|O_{n}\right|=\binom{2 n-1}{n-1}$
[7] obtains some results concerning the semigroup of all maps that are both order - preserving and order - decreasing and showed that $\left|D_{n} \cap O_{n}\right|=\left|C_{n}\right|$ the Catalan numbers

Let $S T_{n}$ be signed full transformation semigroup on $\alpha: X_{n} \rightarrow X_{n}^{*}$ under the usual composition. The signed (partial) transformation semigroups defined in the form $\alpha: \operatorname{dom}(\alpha) \subseteq \operatorname{Im}(\alpha) \subset X_{n}^{*}$. The domain may be empty. We call α signed transformation order - decreasing $S D_{n}$ if $|i \alpha| \leq i$ for all i in $\operatorname{dom}(\alpha)$ and α is signed order - preserving $S O_{n}$ if $i \leq j \Rightarrow|i \alpha| \leq|j \alpha|$ for all $i, j \in \operatorname{dom}(\alpha)$. The semigroup of all maps that are both signed order - preserving and signed order - decreasing are represents by $S C_{n}$ and $S C_{n}=S D_{n} \cap \operatorname{SO} O_{n} . \operatorname{Dom}(\alpha)$ stands for the domain of α while the $\operatorname{Im}(\alpha)$ as image of α as defined by [5].
[15] initiated the study of signed symmetric group while. [11] studied the signed semigroup of full, partial and partial one - one transformation semigroups. The general studied of $S D_{n}, S O_{n}$ and $S C_{n}$ was initiated by [10], [11] , [12], [13], [14]. He studied the order, number of idempotent, nilpotent, self - inverse, decomposition of $S D_{n}, S O_{n}$ and $S C_{n}$ respectively.

The following known results and theorems are very useful to this work.
Theorem 2.1[11] Theorem 4.1.1]. Let $S=S O_{n}$, then for $n \geq 1 .|S|=2^{n}\binom{2 n-1}{n-1}$
Theorem 2.2[11] Theorem 4.1.2]. Let $S=S P O_{n}$, then $|S|=\sum_{k=0}^{n}\binom{n}{k}^{3} 2^{k}$
Theorem 2.3[11] Theorem 4.1.3]. Let $S=S I O_{n}$, then $|S|=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}$

[^0]Theorem 2.4[11] Theorem 4.4.1]. Let $S=S D O_{n}$, then $|S|=n!\sum_{k=0}^{n}\binom{n}{k}$
Theorem 2.5[11] Theorem 4.4.2]. Let $S=I D_{n}$, then $|S|=(k+1)!\binom{n}{k}$
Theorem 2.[11]Theorem 4.8.1]. Let $S=C_{n}$, then $|S|=\frac{1}{n}\binom{2 n}{n-1}=C_{n}$
Theorem 2.7[11] Theorem 4.8.2]. Let $S=S C_{n}$, then $|S|=\frac{1}{n}\binom{2 n}{n-1} \sum_{k=0}^{n}\binom{n}{k}$
Theorem 2.8[11] Theorem 4.8.3]. Let $S=S P C_{n}$, then $|S|=\sum_{k=0}^{n}\binom{n}{k}^{3}\binom{2 n}{k}$
Theorem 2.9[11] Theorem 4.8.4]. Let $S=S I C_{n}$, then $|S|=\sum_{k=0}^{n}\binom{n}{k}\binom{2^{k}}{k}$

METHODOLOGY

Let $P S O_{n}, P S D_{n}, P S C_{n}$ be the polarity of signed order - preserving, signed order - decreasing and both signed order preserving and signed order - decreasing transformation semigroup respectively define on $\alpha: X_{n} \rightarrow X_{n}^{*}$

Polarity of element in signed order - preserving semigroup
Elements in PSO_{1} is
$\left|P S O_{1}\right|=\left\{\binom{1}{-1}\right\}=1$
Elements in PSO_{2}
$\left|P S O_{2}\right|=\left\{\begin{array}{c}\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right), \\ \left(\begin{array}{cc}1 & 2 \\ -2 & 2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -2 & -2\end{array}\right)\end{array}\right\}=9$
$\left|\operatorname{Im}\left(\alpha^{-}\right)\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -2 & -2\end{array}\right)\right\}=3$
$\left|\operatorname{Im}\left(\alpha^{*}\right)\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -2 & 2\end{array}\right)\right\}=6$

Polarity of element in signed order - decreasing semigroup

Elements in $P S D_{1}$ is

$$
\left|P S D_{1}\right|=\binom{1}{-1}
$$

Elements in $P S D_{2}$
$\left|P S D_{2}\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)\right\}$
$\left|\operatorname{Im}\left(\alpha^{-}\right)\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)\right\}=2$
$\left|\operatorname{Im}\left(\alpha^{*}\right)\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right)\right\}=4$

Polarity of element in both signed order - preserving and order decreasing semigroup

Elements in $P S C_{1}$ is
$\left|P S C_{1}\right|=\binom{1}{-1}$
Elements in $P S C_{2}$
$\left|P S C_{2}\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)\right\}$
$\left|\operatorname{Im}\left(\alpha^{-}\right)\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)\right\}=2$
$\left|\operatorname{Im}\left(\alpha^{*}\right)\right|=\left\{\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right),\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right)\right\}=4$

${ }^{1 *}$ Mogbonju, M.M. and ${ }^{2}$ Ogunleke, I.A. /

Polarity in signed order - preserving and order - decreasing semigroup / IRJPA- 9(6), June-2019.
The following table displays element of $P S O_{n}$
Table-3.1: The value of elements in $P S O_{n}$

n	$\left\|\operatorname{Im}\left(\alpha^{-}\right)\right\|$	$\left\|\operatorname{Im}\left(\alpha^{*}\right)\right\|$	$\left\|P S O_{n}\right\|=\binom{2 n-1}{n-1}\left(2^{n}-1\right)$
1	1	-	1
2	3	6	9
3	10	60	70
4	35	490	525
5	126	3780	3906

$\left|\operatorname{Im}\left(\alpha^{-}\right)\right|=$number of the elements with negative integers only in the image of α
$\left|\operatorname{Im}\left(\alpha^{*}\right)\right|=$ number of the elements with positive integers only in the image of α
Theorem 3.1: Let $S=P S O_{n}$, then $|S|=\binom{2 n-1}{n-1}\left(2^{n}-1\right)$
Proof: Let $\alpha \in S$ and the $\operatorname{lm}(\alpha) \subset X_{n}^{*}$ and $X_{n} \subset X_{n}^{*}$ where X_{n}^{*} is the set of elements with the positive and negative only the image of α. Choices some images i from $X_{n}^{*}=\{-n, \cdots,-3,-2 .-1.0,1,2,3, \cdots, n\}$ such as that the $\operatorname{Im}\left(\alpha^{-}\right)=\{-i,-i\} \in X_{n}^{*}$. Since the semigroup is a full transformation the elements of $\operatorname{dom}(\alpha)$ can be chosen from X_{n}^{*} in $\binom{n}{k}$ which is equivalent to $\left(2^{n}-1\right)$ elements. If the $\left|\operatorname{Im}\left(\alpha^{-}\right)\right|=\binom{2 n-1}{n-1}$ which is equivalents to $\left|S O_{n}\right|$, then follows by applying the product rule . hence the result follows.

Table-3.2: Values of elements in $P S D_{n}$

n	$\left\|\operatorname{Im}\left(\alpha^{-}\right)\right\|$	$\left\|\operatorname{Im}\left(\alpha^{*}\right)\right\|$	$\left\|P S D_{n}\right\|=n!\left(2^{n}-1\right)$
1	1	-	1
2	2	4	6
3	6	36	42
4	24	336	360
5	120	3600	3720
6	720	44640	45360

Theorem 3.2: Let $S=P S D_{n}$, then $|S|=n!\left(2^{n}-1\right)$.
Proof: Let $\alpha: X \rightarrow X_{n}^{*}$, then $\operatorname{Im}(\alpha) \subset X_{n}^{*}$ iff $\operatorname{Im}\left(\alpha^{*}\right) \subset X_{n}^{*}$, for each $\alpha \in P D O_{n}$ we have $\operatorname{lm}\left(\alpha^{-}\right)=n!$. Since the $\operatorname{Im}(\alpha)=\{i,-i\}$ where $i=1,2,3, \ldots$ If the $\operatorname{lm}\left(\alpha^{-}\right)=1$, then $|\alpha S|=n!$ while $|\alpha S|=2^{n}$ for $\operatorname{lm}\left(\alpha^{*}\right)=2$. Hence we have $n!\left(2^{n}-1\right)$ elements

Table-3.3: Values of elements in $P S C_{n}$

n	$\left\|\operatorname{Im}\left(\alpha^{-}\right)\right\|$	$\left\|\operatorname{Im}\left(\alpha^{*}\right)\right\|$	$\left\|P S C_{n}\right\|=\frac{1}{n}\binom{2 n}{n-1}\left[\sum_{k=0}^{n}\binom{n}{k}-1\right]$
1	1	-	1
2	2	4	6
3	5	30	35
4	14	196	210
5	42	1260	1302

Theorem 3.3: Let $S=P S C_{n}$ and if $\alpha \in P S C_{n}$ then $|S|=\frac{1}{n}\binom{2 n}{n-1}\left[\sum_{k=0}^{n}\binom{n}{k}-1\right]$
Proof: It follows from Theorem 2.7. Let $\alpha \in P S C_{n}$ and $\alpha: X_{n} \rightarrow X_{n}^{*}$ where $X_{n} \subset X_{n}^{*}$. First observe that $\frac{1}{n}\binom{2 n}{n-1}=\left|C_{n}\right|$ where C_{n} is the nthcatalan number. [6] denoted $\left|C_{n}\right|=\left|O_{n} \cap D_{n}\right|$ and thus $\left|P S C_{n}\right|=\mid P S O_{n} \cap$ $P S D n$. If $d o m \alpha \subseteq X n$ and $I m \alpha \subset X n *$ and $l m a * \in X n *$ then $I m \alpha-=C n$ from the table 3.3. Since k elements from the $\operatorname{dom}(\alpha)$ in a set can be chosen from X_{n} in $\binom{n}{k}$ ways and this equivalents to 2^{n}. If the $\operatorname{Im}\left(\alpha^{*}\right)=\{i,-i\}$ or $\operatorname{Im}\left(\alpha^{*}\right)=\{-i, i\}$ or $\operatorname{Im}\left(\alpha^{*}\right)=\{i,-i\}$ then each element from X_{n} taken could occurs in $2^{n}-1$ ways. Hence multiplying and summing over n, gives the results.

1^{*} Mogbonju, M.M. and ${ }^{2}$ Ogunleke, I.A. /

SUMMARY OF THE RESULTS

The following results with sequences were obtained for all n.

1. Let $S=P S O_{n}$, then $|S|=\binom{2 n-1}{n-1}\left(2^{n}-1\right)$, which generate the sequence $1,9,70,525,3906, \ldots$
2. Let $S=P S D_{n}$, then $|S|=n!\left(2^{n}-1\right)$, which generate the sequence1, $6,42,360,3720,45360, \ldots$
3. Let $S=P S C_{n}$, then $|S|=\frac{1}{n}\binom{2 n}{n-1}\left[\sum_{k=0}^{n}\binom{n}{k}-1\right]$, which generate the sequence $1,6,35,210,1302, \ldots$

CONCLUSION

It is hereby recommended that the polarity and its idempotent, nilpotent of partial and partial one - one signed transformation semigroups can also be study.

REFERENCES

1. Clifford, A.H., and Preston, G.B. (1961) The algebraic theory of semigroups, American Mathematical Society Providence RI. Mathematical Surveys No. 7 Vol. 1.
2. Ganyushkin, O., and Mazorchuk, V. (2009) Introduction to classical finite transformation semigroups, Springer - Verlag London Limited.
3. Howie, J.M. (1966) The subsemigroup generatedby the idempotents of a full transformation semigroup, J. London Maths. Sec., 41, pp. $707-716$.
4. Howie, J.M. (1971) Products of idempotents in certain semigroups of order - preserving, Edinburgh Math. Sc. (2)17: 223--226.
5. Howie, J.M. (1995) Fundamentals of semigroup Theory, London Math. Soc. Monographs, New series, 12 Oxford Science Publications. The Claredon Press, Oxford University Lress, New York.
6. Howie, J.M. (2002) Semigroups, past, present and future, In; Proceedings of the international Conference in Algebra and its Apllication pp. 6-21.
7. Higgins, P.M. (1994) Combinatorial results for semigroups of order - preserving transformation, Mathematics Proc. Cambridge Phil. Soc. 13, 281 - 286.
8. Higgins, P.M., Howie, J.M., and Ruskuc, N. (1998) Generators and factorisations of transformations semigroups, Proc. Roy. Soc. Edinburgh Soc. A. 128. 1355 - 1369.
9. Higgins, P.M., Howie, J.M., Mitchell, J.D. and Ruskuc, N. (2003) Countable versus uncountable ranks in semigroups of transformations and relations, Proc. Edinb. Math. Soc. (2) 46, pp. 531 - 544.
10. Mogbonju, M.M. , Mokanjuola, S.O.,and Adeniji, A.O.(2015) Combinatorial results of signed order preserving transformation semigroup, In: Proceedings of the $34^{\text {th }}$ Annual conference of the Nigeria Mathematical Society (NMS), pp 18 (addendium).
11. Mogbonju, M.M. (2015) Some combinatoric properties of signed transformation semigroups, Ph.D. thesis submitted to Department of Mathematics, University of Ilorin, Kwara state, Nigeria.
12. Mogbonju, M.M., and Adeniji, A.O.(2016a) Decomposition in signed difference semigroup, In Proceedings of the $50^{\text {th }}$ anniversary conference of Science Assoiation of Nigeria (SAN), pp. 81 (Adendum)
13. Mogbonju, M.M., Adeniji, A.O, and Makanjuola S.O. (2016b) Difference in signed symmetric group and signed transformation semigroup, In Proceedings of the $50^{\text {th }}$ anniversary conference of Science Assoiation of Nigeria (SAN), pp. 36.
14. Mogbonju, M.M., and Azeez, R.A.(2018) On some signed semigroup of order - preserving transformation, International Journal of Mathematics and Statistics Studies, Vol. 2, pp 38-45.
15. Richard, F. P. (2008) Transformation semigroups Over Groups, Ph. D. thesis, University of North Carolina State University, Raleigh, North Carolina.
16. Sloane, N.J.A., (2011) The On - line Encyclopaedia of Integer Sequence, Available at http:oeis.org.
17. Umar, A. (1996) On the ranks of certains semigroups of order - decreasing transformations, Portugaliac Mathematics, 53: 23 - 32.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2019, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

[^0]: Corresponding Author: ${ }^{1 *}$ Mogbonju, M.M., ${ }^{1}$ Department of Mathematics University of Abuja. P.M.B. 117. F.C.T. Nigeria.

