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ABSTRACT 
Let 𝛼 be a transformation from the set𝑋𝑛 ⟶ 𝑋𝑛

∗, then the signed (partial) transformation semigroup is defined in the 
𝛼: 𝑑𝑜𝑚(𝛼) ⊆ 𝑋𝑛 ⟶  𝐼𝑚(𝛼) ⊂  𝑋𝑛

∗  where 𝑋𝑛 = {1,2,3, ⋯ , 𝑛} and  𝑋𝑛
∗ = {−𝑛, ⋯ , −3, −2. −1.0,1,2,3, ⋯ , 𝑛}. The paper 

aimed at investigate the polarity of elements in these semigroup. 
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INTRODUCTION AND PRELIMINARY  
 
[4] studied the semigroups of order – preserving and order – preserving of a finite set 𝑋𝑛 = {1,2,3, ⋯ }. A map    
𝛼: 𝑋 ⟶ 𝑋𝑛

∗  is called order – decreasing, 𝐷𝑛 of all 𝑖 𝑖𝑛 𝑋, 𝑖𝛼 ≤ 𝑖. The semigroups of all order – decreasing maps is of 
cardinality 𝑛!. A general study of 𝐷𝑛 was initiated by [17]. A mapping is called order – preserving if for all 
𝑖, 𝑗 𝑖𝑛 {1,2,3, ⋯ }, 𝑖 ≤ 𝑗 ⟹ 𝑖𝛼 ≤ 𝛼𝑗 where 𝑖𝛼, 𝛼𝑗 ∈ 𝑑𝑜𝑚(𝛼). The semigroup of order – preserving full transformation 
of 𝑋𝑛 will be denoted by 𝑂𝑛. [4] showed that the order of | 𝑂𝑛| = �2𝑛 − 1

𝑛 − 1 � 
 
[7] obtains some results concerning the semigroup of all maps that are both order – preserving and order – decreasing 
and showed that |𝐷𝑛 ∩ 𝑂𝑛| = |𝐶𝑛| the Catalan numbers        
 
Let 𝑆𝑇𝑛 be signed full transformation semigroup on  𝛼: 𝑋𝑛 ⟶ 𝑋𝑛

∗ under the usual composition. The signed (partial) 
transformation semigroups defined in the form𝛼: 𝑑𝑜𝑚(𝛼) ⊆ 𝐼𝑚(𝛼) ⊂  𝑋𝑛

∗. The domain may be empty. We call 𝛼 
signed transformation order – decreasing 𝑆𝐷𝑛 if |𝑖𝛼| ≤ 𝑖 for all 𝑖 in 𝑑𝑜𝑚(𝛼) and 𝛼 is signed order – preserving 𝑆𝑂𝑛 if 
𝑖 ≤ 𝑗 ⟹ |𝑖𝛼| ≤ |𝑗𝛼| for all 𝑖, 𝑗 ∈ 𝑑𝑜𝑚(𝛼). The semigroup of all maps that are both signed order – preserving and 
signed order – decreasing are represents by 𝑆𝐶𝑛 and 𝑆𝐶𝑛 = 𝑆𝐷𝑛 ∩ 𝑆𝑂𝑛 . 𝐷𝑜𝑚(𝛼) stands for the domain of 𝛼 while the 
𝐼𝑚(𝛼) as image of 𝛼 as defined by [5]. 
 
[15] initiated the study of signed symmetric group while. [11] studied the signed semigroup of full, partial and partial 
one – one transformation semigroups. The general studied of  𝑆𝐷𝑛 , 𝑆𝑂𝑛 and 𝑆𝐶𝑛 was initiated by [10], [11] , [12], [13], 
[14]. He studied the order, number of idempotent, nilpotent, self - inverse, decomposition of 𝑆𝐷𝑛 , 𝑆𝑂𝑛 and 𝑆𝐶𝑛 
respectively. 
 
The following known results and theorems are very useful to this work. 
 
Theorem 2.1[11] Theorem 4.1.1]. Let 𝑆 = 𝑆𝑂𝑛, then for 𝑛 ≥ 1. | 𝑆 | = 2𝑛 �2𝑛 − 1

𝑛 − 1 � 
 

Theorem 2.2[11] Theorem 4.1.2]. Let 𝑆 = 𝑆𝑃𝑂𝑛, then | 𝑆 | = ∑ �𝑛
𝑘�

3
𝑛
𝑘=0 2𝑘 

 
Theorem 2.3[11] Theorem 4.1.3]. Let 𝑆 = 𝑆𝐼𝑂𝑛, then | 𝑆 | = ∑ �𝑛

𝑘� �𝑛 + 𝑘
𝑘 �𝑛

𝑘=0  
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Theorem 2.4[11] Theorem 4.4.1]. Let 𝑆 = 𝑆𝐷𝑂𝑛, then | 𝑆 | = 𝑛! ∑ �𝑛

𝑘�𝑛
𝑘=0  

 
Theorem 2.5[11] Theorem 4.4.2]. Let 𝑆 = 𝐼𝐷𝑛, then | 𝑆 | = (𝑘 + 1)! �𝑛

𝑘� 
 
Theorem 2.[11]Theorem 4.8.1]. Let 𝑆 = 𝐶𝑛, then | 𝑆 | = 1

𝑛
� 2𝑛

𝑛 − 1� = 𝐶𝑛 
 
Theorem 2.7[11] Theorem 4.8.2]. Let 𝑆 = 𝑆𝐶𝑛, then | 𝑆 | = 1

𝑛
� 2𝑛

𝑛 − 1� ∑ �𝑛
𝑘�𝑛

𝑘=0  
 

Theorem 2.8[11] Theorem 4.8.3]. Let 𝑆 = 𝑆𝑃𝐶𝑛, then | 𝑆 | = ∑ �𝑛
𝑘�

3
𝑛
𝑘=0 �2𝑛

𝑘 � 
 

Theorem 2.9[11] Theorem 4.8.4]. Let 𝑆 = 𝑆𝐼𝐶𝑛, then | 𝑆 | = ∑ �𝑛
𝑘�𝑛

𝑘=0 �2𝑘

𝑘
� 

 
METHODOLOGY 
 
Let 𝑃𝑆𝑂𝑛 , 𝑃𝑆𝐷𝑛 , 𝑃𝑆𝐶𝑛 be the polarity of signed order – preserving, signed order – decreasing and both signed order – 
preserving and signed order – decreasing transformation semigroup respectively define on 𝛼: 𝑋𝑛 ⟶ 𝑋𝑛

∗ 
 
Polarity of element in signed order – preserving semigroup 
 
Elements in 𝑃𝑆𝑂1 is 
| 𝑃𝑆𝑂1 | = �� 1

−1�� = 1 
 
Elements in  𝑃𝑆𝑂2 

| 𝑃𝑆𝑂2 | = �
�1 2

1 −1� , �1 2
1 −2� , �1 2

2 −2� , � 1 2
−1 1� , � 1 2

−1 2� ,

� 1 2
−2 2� , � 1 2

−1 −1� , � 1 2
−1 −2� , � 1 2

−2 −2�
� = 9 

| 𝐼𝑚(𝛼−) | = �� 1 2
−1 −1� , � 1 2

−1 −2� , � 1 2
−2 −2�� = 3 

| 𝐼𝑚(𝛼∗) | = ��1 2
1 −1� , �1 2

1 −2� , �1 2
2 −2� , � 1 2

−1 1� , � 1 2
−1 2� , � 1 2

−2 2�� = 6 
 
Polarity of element in signed order – decreasing semigroup 
 
Elements in 𝑃𝑆𝐷1 is 
   | 𝑃𝑆𝐷1 | = � 1

−1� 
 
Elements in  𝑃𝑆𝐷2 
| 𝑃𝑆𝐷2 | = ��1 2

1 −1� , �1 2
1 −2� , � 1 2

−1 1� � 1 2
−1 2� , � 1 2

−1 −1� , � 1 2
−1 −2�� 

| 𝐼𝑚(𝛼−) | = �� 1 2
−1 −1� , � 1 2

−1 −2�� = 2 

| 𝐼𝑚(𝛼∗) | = ��1 2
1 −1� , �1 2

1 −2� , � 1 2
−1 1� � 1 2

−1 2�� = 4 
 
Polarity of element in both signed order – preserving and order decreasing semigroup 
 
Elements in 𝑃𝑆𝐶1 is 
| 𝑃𝑆𝐶1 | = � 1

−1� 
 
Elements in  𝑃𝑆𝐶2 
| 𝑃𝑆𝐶2 | = ��1 2

1 −1� , �1 2
1 −2� , � 1 2

−1 1� , � 1 2
−1 2� , � 1 2

−1 −1� , � 1 2
−1 −2�� 

| 𝐼𝑚(𝛼−) | = �� 1 2
−1 −1� , � 1 2

−1 −2�� = 2 

| 𝐼𝑚(𝛼∗) | = ��1 2
1 −1� , �1 2

1 −2� , � 1 2
−1 1� � 1 2

−1 2�� = 4 
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The following table displays element of 𝑃𝑆𝑂𝑛 
 

Table-3.1: The value of elements in  𝑃𝑆𝑂𝑛    
𝑛 | 𝐼𝑚(𝛼−) | | 𝐼𝑚(𝛼∗) | | 𝑃𝑆𝑂𝑛| = �2𝑛 − 1

𝑛 − 1 � (2𝑛 − 1) 

1 1 − 1 
2 3 6 9 
3 10 60 70 
4 35 490 525 
5 126 3780 3906 

 
| 𝐼𝑚(𝛼−)| = number of the elements with negative integers only in the image of 𝛼 
| 𝐼𝑚(𝛼∗) | = number of the elements with positive  integers only in the image of 𝛼 
 
Theorem 3.1: Let 𝑆 = 𝑃𝑆𝑂𝑛, then | 𝑆 | = �2𝑛 − 1

𝑛 − 1 � (2𝑛 − 1) 
 
Proof: Let 𝛼 ∈ 𝑆 and the 𝑙𝑚(𝛼) ⊂  𝑋𝑛

∗  and 𝑋𝑛 ⊂  𝑋𝑛
∗  where 𝑋𝑛

∗   is the set of elements with the positive and negative 
only the image of  𝛼. Choices some images 𝑖 from 𝑋𝑛

∗ = {−𝑛, ⋯ , −3, −2. −1.0,1,2,3, ⋯ , 𝑛} such as that the   
𝐼𝑚(𝛼−) = {−𝑖, −𝑖}  ∈ 𝑋𝑛

∗ . Since the semigroup is a full transformation the elements of  𝑑𝑜𝑚(𝛼) can be chosen from 
𝑋𝑛

∗  in �𝑛
𝑘� which is equivalent to (2𝑛 − 1) elements. If the | 𝐼𝑚(𝛼−) | = �2𝑛 − 1

𝑛 − 1 �  which is equivalents to | 𝑆𝑂𝑛 | , 
then follows by applying the product rule . hence the result follows.                                          
 

Table-3.2: Values of elements in 𝑃𝑆𝐷𝑛 
𝑛 | 𝐼𝑚(𝛼−) | | 𝐼𝑚(𝛼∗) | | 𝑃𝑆𝐷𝑛| = 𝑛! (2𝑛 − 1) 
1 1 − 1 
2 2 4 6 
3 6 36 42 
4 24 336 360 
5 120 3600 3720 
6 720 44640 45360 

 
Theorem 3.2: Let 𝑆 = 𝑃𝑆𝐷𝑛, then | 𝑆 | = 𝑛! (2𝑛 − 1). 
 
Proof: Let 𝛼: 𝑋 ⟶ 𝑋𝑛

∗ , then 𝐼𝑚(𝛼) ⊂  𝑋𝑛
∗ iff 𝐼𝑚(𝛼∗) ⊂  𝑋𝑛

∗ , for each 𝛼 ∈ 𝑃𝐷𝑂𝑛 we have 𝑙𝑚(𝛼−) = 𝑛!. Since the 
𝐼𝑚(𝛼) = {𝑖, −𝑖} where 𝑖 = 1,2,3, … If the 𝑙𝑚(𝛼−) = 1, then |𝛼𝑆| = 𝑛! while |𝛼𝑆| = 2𝑛 for 𝑙𝑚(𝛼∗) = 2. Hence we 
have  𝑛! (2𝑛 − 1) elements 
 

Table-3.3: Values of elements in 𝑃𝑆𝐶𝑛 
𝑛 | 𝐼𝑚(𝛼−) | | 𝐼𝑚(𝛼∗) | 

| 𝑃𝑆𝐶𝑛| =
1
𝑛

� 2𝑛
𝑛 − 1� �� �𝑛

𝑘� − 1
𝑛

𝑘=0

� 

1 1 − 1 
2 2 4 6 
3 5 30 35 
4 14 196 210 
5 42 1260 1302 

 
 
Theorem 3.3: Let 𝑆 = 𝑃𝑆𝐶𝑛 and if 𝛼 ∈ 𝑃𝑆𝐶𝑛 then | 𝑆 | = 1

𝑛
� 2𝑛

𝑛 − 1� �∑ �𝑛
𝑘� − 1𝑛

𝑘=0 � 
 
Proof: It follows from Theorem 2.7. Let 𝛼 ∈ 𝑃𝑆𝐶𝑛 and 𝛼: 𝑋𝑛 ⟶ 𝑋𝑛

∗ where  𝑋𝑛 ⊂  𝑋𝑛
∗ . First observe that       

1
𝑛

� 2𝑛
𝑛 − 1� = |𝐶𝑛| where 𝐶𝑛 is the 𝑛𝑡ℎcatalan number. [6] denoted |𝐶𝑛| =  |𝑂𝑛 ∩ 𝐷𝑛| and thus |𝑃𝑆𝐶𝑛| =  |𝑃𝑆𝑂𝑛 ∩

𝑃𝑆𝐷𝑛. If  𝑑𝑜𝑚𝛼⊆𝑋𝑛 and 𝑙𝑚𝛼⊂ 𝑋𝑛∗ and 𝑙𝑚𝛼∗∈𝑋𝑛∗ then 𝑙𝑚𝛼−= 𝐶𝑛 from the table 3.3. Since                  𝑘 elements 
from the 𝑑𝑜𝑚(𝛼) in a set can be chosen from 𝑋𝑛 in �𝑛

𝑘� ways and this equivalents to 2𝑛. If the        𝐼𝑚(𝛼∗) = {𝑖, −𝑖}or 
𝐼𝑚(𝛼∗) = {−𝑖, 𝑖} or 𝐼𝑚(𝛼∗) = {𝑖, −𝑖} then each element from 𝑋𝑛 taken could occurs in 2𝑛 − 1 ways. Hence 
multiplying and summing over 𝑛, gives the results. 
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SUMMARY OF THE RESULTS 
 
The following results with sequences were obtained for all 𝑛. 
1. Let 𝑆 = 𝑃𝑆𝑂𝑛 , then| 𝑆 | = �2𝑛 − 1

𝑛 − 1 � (2𝑛 − 1), which generate the sequence 1, 9, 70, 525 ,3906 , . . . 
2. Let 𝑆 = 𝑃𝑆𝐷𝑛, then | 𝑆 | = 𝑛! (2𝑛 − 1), which generate the sequence1, 6, 42, 360, 3720, 45360, . . . 
3. Let 𝑆 = 𝑃𝑆𝐶𝑛, then | 𝑆 | = 1

𝑛
� 2𝑛

𝑛 − 1� �∑ �𝑛
𝑘� − 1𝑛

𝑘=0 �, which generate the sequence 1, 6, 35, 210, 1302, . . . 
 
CONCLUSION  
 
It is hereby recommended that the polarity and its idempotent, nilpotent of partial and partial one – one signed 
transformation semigroups can also be study. 
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