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ABSTRACT 
A topological index or graph index is a numerical parameter mathematically derived from the graph structure. In this 
paper we introduce the total Kulli-Basava index, modified inverse first Kulli-Basava inverse degree, Kulli-Basava 
Zeroth order index, F-Kulli-Basava index and general Kulli-Basava index of a graph. Also we introduce the total Kulli-
Basava polynomial and F-Kulli-Basava polynomial of a graph. Furthermore, we exact formulas for regular graphs, 
complete graphs, cycles, wheel graphs, gear graphs and helm graphs. 
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1. INTRODUCTION 

 
Let G = (V(G), E(G) be a finite, simple, connected graph. The degree dG(v) of a vertex v is the number of edges 
incident to v. The degree of an edge e = uv in a graph G is defined by dG(e) = dG(u) + dG(v) – 1. The set of all edges 
incident to v is called the edge neighborhood of v and denoted by Ne(v). Let Se(v) denote the sum of degrees of all edges 
incident to a vertex v. For undefined term and notation, we refer the reader to [1]. 
 
A topological index or graph index is a numerical parameter mathematically derived from the graph structure. The 
Graph indices have their applications in various disciplines of Science and Technology. 
 
The modified first Kulli-Basava index was defined by Basavanagoud et.al [2], as  
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In [3], Kulli introduced the modified first Kulli-Basava polynomial of a graph, defined as  
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Recently, the hyper Kulli-Basava indices [3], connectivity Kulli-Basava indices [4], square Kulli-Basava index [5], 
multiplicative Kulli-Basava and multiplicative hyper Kulli-Basava indices [6] were introduced and studied. 
 
We propose the following the Kulli-Basava indices: 
 
The total Kulli-Basava index of a graph G is defined as  
 ( ) ( )
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The modified inverse first Kulli-Basava index of a graph G is defined as  
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The Kulli-Basava inverse degree of a graph G is defined as  

 ( )
( )( )
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The Kulli-Basava zeroth order index of a graph G is defined as  
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The F-Kulli-Basava index of a graph G is defined as  
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The general Kulli-Basava index of a graph G is defined as  

 ( ) ( )
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= ∑                                                                                                                           (1) 

where a is a real number. 
We also introduce the total Kulli-Basava polynomial and F-Kulli-Basava Polynomial of a graph, defined as  
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In recent years, some topological indices were studied, for example, in [7, 8, 9, 10, 11, 12, 13, 14]. 
 
In this study, we derive explicit formulas for computing the total Kulli-Basava index, modified inverse first Kulli-
Basava index, Kulli-Basava inverse degree, Kulli-Basava zeroth order index, F-Kulli-Basava index and general Kulli-
Basava index of regular, wheel, gear, helm graphs, Also we compute the total Kulli-Basava Polynomial and F-Kulli-
Basava polynomial of regular, wheel, gear and helm graphs. For wheel, gear, helm graphs, see [15] 
 
2. RESULTS FOR REGULAR GRAPHS 
 
A graph G is r-regular if the degree of each vertex of G is r. 
 
Theorem 1: Let G be an r-regular graph with n vertices and m edges. Then the general Kulli-Basava index of G is  

 ( ) ( )[ ]2 1 .
aaKB G n r r= −                                                                                                                      (4) 

 

Proof: Let G be an r- regular graph with n vertices and m edges. Then 
2
nrm = , Se(u) = 2r(r – 1) for each vertex u of 

G. Thus  
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Corollary 1.1: If G is an r-regular graph with n vertices, then 

(i)  ( ) ( )2 1 .TKB G nr r= −  (ii) ( )
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Proof: Put a = 1, –2, –1, 
1
2

− , 3 in equation (4), we get the desired results. 

 
Corollary 1.2: If Kn is a complete graph with n vertices then 
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Proof: Put r = n – 1 and a =1, –1, 
1
2

− , 3 in equation (4), we obtain the desired results. 

 
Corollary 1.3: If Cn is a cycle with n vertices, then  

(i)  ( ) 4 .nTKB C n=  (ii) ( )*
1 .

16
m
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(iii) ( ) .
4n
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(iv) ( ) .

2n
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(v) ( ) 64 .nFKB C n=  
 

Proof: Put r = 2, Also put a =1, –2, –1, 
1
2

− , 3 in equation (4), we get the desired results. 

 
Theorem 2: Let G be an r-regular graph with n vertices. Then  

(i) ( ) ( )2 1, .r rTKB G x nx −=   (ii) ( ) ( )338 1, .r rFKB G x nx −=  
 
Proof: Let G be an r-regular graph with n vertices. Then Se(u) = 2r(r – 1) for each vertex u of G. Thus  

(i) ( ) ( )

( )

( )2 1, .eS u r r

u V G
TKB G x x nx −

∈

= =∑  (ii) ( ) ( )

( )

( )3 338 1, .eS u r r

u V G
FKB G x x nx −

∈

= =∑  

 
Corollary 2.1: Let Kn be a complete graph with n vertices. Then 

(i) ( ) ( )( )2 1 2, .n n
nTKB K x nx − −=   (ii) ( ) ( ) ( )3 38 1 2, .n n

nFKB K x nx − −=  
 
Corollary 2.2: Let Cn be a cycle with n vertices. Then  
(i) ( ) 4, .nTKB C x nx=   (ii) ( ) 64, .nFKB C x nx=  
 
3. RESULTS FOR WHEEL GRAPHS 
 
A wheel Wn is the join of Cn and K1. Clearly Wn has n+1 vertices and 2n edges. The vertices of Cn are called rim 
vertices and the vertex of K1 is called apex. A graph Wn is shown in Figure 1. 

 
Figure-1: Wheel Wn 

 
Lemma 3: Let Wn be a wheel with n+1 vertices and 2n edges. Then Wn has two types of vertices as given below: 
 V1 = {u ∈ V(Wn) | Se(u) = n(n+1)}, |V1| = 1. 
 V2 = {u ∈ V(Wn) | Se(u) = n+9}, |V2| = n. 
 
Theorem 4: The general Kulli-Basava index of a wheel Wn is  

 ( ) ( )[ ] ( )1 9 .
a aa

nKB W n n n n= + + +                                                                                          (5) 
 
Proof: Let Wn be a wheel with n +1 vertices and 2n edges. Then by using equation (1) and Lemma 3, we obtain  
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Theorem 5: Let Wn be a wheel with n+1 vertices and 2n edges. Then 

(i) ( ) ( )1 9, .n n n
nTKB W x x nx+ += +   (ii) ( ) ( ) ( )3 33 1 9, .n n n

nFKB W x x nx+ += +  
 
Proof:    (i) from equation (2) and by using Lemma (30), we deduce 
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(ii) By using equation (3) and Lemma 3, we have 
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4. RESULTS FOR GEAR GRAPHS 
 
A gear graph Gn is a graph obtained from Wn by adding a vertex between each pair of adjacent rim vertices. Clearly Gn 
has 2n+1 vertices and 3n edges. A gear graph Gn is presented in Figure 2. 

 
Figure-2: Gear graph Gn 

 
Lemma 6: Let Gn be a gear graph with 2n+1 vertices and 3n edges. Then Gn has three types of vertices as follows: 
 V1 = {u ∈ V(Gn) | Se(u) = n(n+1)}, |V1| = 1. 
 V2 = {u ∈ V(Gn) | Se(u) = n+7}, |V2| = n. 
 V3 = {u ∈ V(Gn) | Se(u) = 6}, |V3| = n. 
 
Theorem 7: The general Kulli-Basava index of a gear graph Gn, is given by 

 ( ) ( )[ ] ( )1 7 6 .
a aa a

nKB G n n n n n= + + + +                                                                            (6) 
 
Proof: Let Gn be a gear graph with 2n+1 vertices and 3n edges. Then from equation (1) and by using Lemma 6, we 
deduce 
 

 ( ) ( )
( )

( )[ ] ( )1 2 31 7 6
n

aa aa a
n e

u V G
KB G S u V n n V n V

∈

= = × + + × + +∑  

  ( )[ ] ( )1 7 6 .
a a an n n n n= + + + +  

 
Corollary 7.1: Let Gn be a gear graph with 2n+1 vertices and 3n edges. Then 
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Proof: Put a = 1, –2, –1, 
1
2

− , 3 in equation (6) we get the desired results. 
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Theorem 8: Let Gn be a gear graph with 2n+1 vertices and 3n edges. Then 

(i) ( ) ( )1 7 6, .n n n
nTKB G x x nx nx+ += + +   (ii) ( ) ( ) ( )3 33 1 7 216, .n n n
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Proof:  
(i) By using equation (2) and Lemma 6, we derive 
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5. RESULTS FOR HELM GRAPHS 
 
A helm graph, denoted by Hn, is a graph obtained from Wn by attaching an end edge to each rim vertex Clearly Hn has 
m +1 vertices and 3n edges. A graph Hn is depicted in Figure 3. 

 
Figure-3: Helm graph Hn 

 
Lemma 9: Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then Hn has three types of vertices as follows: 
 V1 = {u ∈ V(Hn) | Se(u) = n(n+2)}, |V1| = 1. 
 V2 = {u ∈ V(Hn) | Se(u) = n+17}, |V2| = n. 
 V3 = {u ∈ V(Hn) | Se(u) = 3}, |V3| = n. 
 
 
Theorem 10: The general Kulli-Basava index of a helm graph Hn is given by  

 ( ) ( )[ ] ( )2 17 3 .
a aa a
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Proof: Let Hn be a helm graph with 2n+1 vertices and 3n edges From equation (1) and by using Lemma 9, we derive  
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Corollary 10.1: Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then  
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Proof: Put a = 1, –2, –1, 
1
2

− , 3 in equation (7) we obtain desired results. 

 
Theorem 11: Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then 
 (i) ( ) ( )2 17 3, .n n n

nTKB H x x nx nx+ += + +  
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Proof: (i) From equation (2) and using Lemma 9, we obtain  
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           (ii) By using equation (3) and Lemma 9, we have  
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