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ABSTRACT 
In this paper, we propose the total status neighborhood index, modified vertex status neighborhood index, status 
neighborhood inverse degree, status neighborhood zeroth order index, F-status neighborhood index, F1-status 
neighborhood index, general vertex status neighborhood index of a graph. Also we introduce the total status 
neighborhood polynomial, third status neighborhood polynomial, F-status neighborhood polynomial, F1-status 
neighborhood polynomial of a graph. We compute exact formulas for complete graphs, complete bipartite graphs, 
wheel graphs and friendship graphs. 
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1. INTRODUCTION 
 
Throughout the paper, we consider only finite, undirected simple, connected graphs. Let V(G) be the vertex set and 
E(G) be the edge set of a graph G. The edge between the vertices u and v is denoted by uv. The degree of a vertex u is 
the number of vertices adjacent to u and is denoted by dG(u). The distance d(u, v) between any two vertices u and v is 
the length of shortest path connecting u and v. The status σ(u) of a vertex u in G is the sum of its distance from every 
other vertex of G. Let N(v) = NG(v) = {u:uv∈(G)}. Let ( ) ( )

( )
n

u N v
v uσ σ

∈
= ∑  be the status sum of neighbor vertices. 

For graph theoretic terminology, we refer the book [1]. 
 
Many distance based indices of a graph such as Wiener index [4] have been appeared in the literature. In this paper, we 
introduce some new status neighborhood indices of graphs. 
 
The third or vertex status neighborhood index was introduced by Kulli in [5] and it is defined as 

( ) ( )
( )

2
3 n

u V G
SN G uσ

∈
= ∑

 
 
Recently some variants of status neighborhood indices were studied in [6]. 
 
We introduce the following status neighborhood indices: 
 
The modified the third or vertex status neighborhood index of a graph G is defined as 

 ( )
( )( )

3 2
1 .m

u V G n

SN G
uσ∈

= ∑  

 
The F-status neighborhood index of a graph G is defined as 

 ( ) ( )
( )

3.n
u V G

FSN G uσ
∈

= ∑  
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The total status neighborhood index of a graph G is defined as 
 ( ) ( )

( )
.sn n

u V G
T G uσ

∈
= ∑  

 
The status neighborhood inverse degree of a graph G is defined as 

 ( )
( )( )

1 .
nu V G

SNI G
uσ∈

= ∑  

 
The status neighborhood zeroth order index of a graph G is defined as 

 ( )
( )( )

1 .
u V G n

SNZ G
uσ∈

= ∑  

 
We continue this generalization and introduce the general third or vertex status neighborhood index of a graph G, and it 
is defined as

 

 
( ) ( )

( )
3 ,aa

n
u V G

SN G uσ
∈

= ∑  

where a is a real number. 
 
Also we introduce the F1-status neighborhood index of a graph G and it is defined as 

 ( ) ( ) ( )
( )

2 2
1 .n n

uv E G
F SN G u vσ σ

∈

 = + ∑  

 
Recently, some variants of status indices were studied, for example, in [7, 8, 9, 10, 11, 12, 13, 14, 15]. 
 
The third or vertex status neighborhood polynomial was defined by Kulli in [5], defined as 

 ( ) ( )

( )

2

3 , .n u

u V G
SN G x xσ

∈
= ∑  

 
We now introduce the total status neighborhood polynomial, F-status neighborhood polynomial, F1-status 
neighborhood polynomial of a graph G, and they are defined as 

 ( ) ( )

( )
, .n u

sn
u V G

T G x xσ

∈
= ∑  

 ( ) ( )

( )

3

, .n u

u V G
FSN G x xσ

∈
= ∑  

 ( ) ( ) ( )

( )

2 2

1 , .n nu v

uv E G
F SN G x xσ σ+

∈
= ∑  

 
Recently some different polynomials were studied in [16, 17, 18, 19, 20, 21]. 
 
In this paper, the modified vertex status neighborhood index, status neighborhood zeroth order index, F-status 
neighborhood index, F1-status neighborhood index, general vertex status neighborhood index of some standard graphs 
and friendship graphs are determined. Also the total status neighborhood polynomial, vertex status neighborhood 
polynomial, F1-status neighborhood polynomial of some standard graphs and friendship graphs are computed. 
 
2. RESULTS FOR COMPLETE GRAPHS 

Let Kn be a complete graph with n vertices and 
( )1

2
n n −

 edges. 

 
Theorem 1: The general third or vertex status neighborhood index of a complete graph Kn is 

  ( ) ( )2
3 1 .aa

nSN K n n= −                                                   (1) 
 
Proof: Let Kn be a complete graph with n vertices. For any vertex u of Kn, σ(u)= n – 1. Thus σn(u) = (n – 1)2 for any 
vertex of Kn. Thus 

 ( ) ( )
( )

( )2
3 1 .

n

a aa
n n

u V K
SN K u n nσ

∈
= = −∑  
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We obtain the following results by using Theorem 1. 
 
Corollary 1.1: Let Kn be a complete graph with Kn with n vertices. Then 

 (i) ( ) ( )4
3 1nSN K n n= −   (ii) ( )

( )3 4 .
1

m
n

nSN K
n

=
−

 

 (iii) ( ) ( )61nFSN K n n= −   (iv) ( ) ( )21 .sn nT K n n= −  

 (v) ( )
( )21

n
nSNI K

n
=

−
  (vi) ( ) .

1n
nSNZ K

n
=

−
 

 
Proof: Put a = 2, –2, 3, 1, –1, –½ in equation (1), we obtain the desired results. 
 
Theorem 2: The general second status neighborhood index of a complete graph Kn is 

 (i) ( ) ( )5
1 1 .nF SN K n n= −   (ii) ( )

( ) ( )42 1
1

1, .
2

n
n

n nF SN K x x −−
=  

Proof: Let Kn be a complete graph with n vertices and 
( )1

2
n n −

edges. For any vertex u of Kn, ( ) ( )21n u nσ = − . 

Therefore 

(i) ( ) ( ) ( )
( )

( ) ( )
( )2 2 4 4

1
11 1

2
n

n n n
uv E K

n nF SN K u u n nσ σ
∈

−   = + = − + −  ∑  

                              ( )51 .n n= −  

(ii) ( ) ( ) ( )

( )

( ) ( ) ( )2 2 4 41 1
1

1
2

n n

n

u u n n
n

uv E K

n nF SN K x xσ σ+ − −

∈

−
= = ×∑  

    
( ) ( )42 11 .

2
nn n x −−

=  

 
Theorem 3: The total status neighborhood polynomial and F-status neighborhood polynomial of a complete graph Kp 
are given by 

 (i) ( ) ( )21, .n
sn nT K x nx −=   (ii) ( ) ( )61, .n

nFSN K x nx −=  
 
Proof: Let Kn be a complete graph with n vertices. Then σn(u) = (n – 1)2 for any vertex u of Kn. Thus 

(i) ( ) ( )

( )

( )21, .n u n
sn n

u V G
T K x x nxσ −

∈
= =∑  

(ii) ( ) ( )

( )

( )3 61, .n u n
n

u V G
FSN K x x nxσ −

∈
= =∑  

 
3. RESULTS FOR COMPLETE BIPARTITE GRAPHS 
 
Let Kp,q be a complete bipartite graph with p+q vertices and pq edges. For vertex set of Kp,q can be partitioned into two 
independent sets V1 and V2 such that u ∈ V1 and v ∈ V2 for every edge uv in Kp,q. Therefore dK(u)=q, dK(v)=p, where 
K=Kp,q. Then σ(u)= q + 2p – 2 and σ(v)= p + 2q – 2. By calculation, we obtain σn(u)= p(q + 2p – 2) and σn(v)= q(p + 
2q – 2). Therefore 
 

( ) ( )\n u u V Gσ ∈  q(p + 2q – 2) p(q + 2p – 2) 
Number of edges p q 

Table-1: Status neighborhood vertex partition of Kp,q 
Theorem 4: The general vertex status neighborhood index of a complete bipartite graph Kp,q is 

  ( ) ( ) ( ), 2 2 2 2 .a aa
v p qSN K p q p q q p q p   = + − + + −                                     (2) 

 
Proof: By definition and by using Table 1, we deduce 

 ( ) ( )
( )

( ) ( ), 2 2 2 2 .a aaa
p q n

u V G
SN K u p q p q q p q pσ

∈

   = = + − + + −   ∑  
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From Theorem 4, we establish the following results. 
 
Corollary 4.1: Let Kp,q be a complete bipartite graph. Then 

(i) ( ) ( ) ( )2 22 2
, 2 2 2 2 .p qSN K pq p q p q q p= + − + + −  

(ii) ( )
( ) ( ), 2 22 2

.
2 2 2 2

m
p q

p qSN K
q p q p q p

= +
+ − + −

 

(iii) ( ) ( ) ( )3 33 3
, 2 2 2 2 .p qFSN K pq p q p q q p= + − + + −  

(iv) ( ) ( ), 3 4 .sn p qT K pq pq= −  

(v) ( ) ( ) ( ), .
2 2 2 2p q
p qSNI K

q p q p q p
= +

+ − + −
 

(vi) ( )
( ) ( ), .

2 2 2 2
p q

p qSNZ K
q p q p q p

= +
+ − + −

 

 
Proof: Put a = 2, –2, 3, 1, –1, –½ in equation (2), we obtain the desired results. 
 
Theorem 5: Let Kp,q be a complete bipartite graph with p+q vertices and pq edges. Then 

(i) ( ) ( ) ( )2 22 2
1 , 2 2 2 2 .p qF SN K pq q p q p q p = + − + + −    

(ii) ( ) ( ) ( )2 22 22 2 2 2
1 , , .q p q p q p

p qF SN K x pqx + − + + −=  

 
Proof: We have 

(i) ( ) ( ) ( )
( )

( ) ( )2 22 2 2 2
1 , 2 2 2 2 .p q n n

uv E G
F SN K u v pq q p q p q pσ σ

∈

  = + = + − + + −   ∑  

(ii) ( ) ( ) ( )

( )

( ) ( )2 22 2 2 22 2 2 2
1 , , .n n q p q p q pu v

p q
uv E G

F SN K x x pqxσ σ + − + + −+

∈
= =∑  

 
Theorem 6: The total status neighborhood polynomial and F-status neighborhood polynomial of a complete bipartite 
graph Kp,q is 

(i) ( ) ( ) ( )2 2 2 2
, , q p q p q p

sn p qT K x px qx+ − + −= +   

(ii) ( ) ( ) ( )3 33 32 2 2 2
, , .q p q p q p

p qFSN K x px qx+ − + −= +  

 
Proof: We have 

(i) ( ) ( )

( )

( ) ( )2 2 2 2
, , .n q p q p q pu

sn p q
u V G

T K x x px qxσ + − + −

∈
= = +∑  

(ii) ( ) ( )

( )

( ) ( )3 33 3 32 2 2 2
, , .n q p q p q pu

p q
u V G

FSN K x x px qxσ + − + −

∈
= = +∑  

 
4. RESULTS FOR WHEEL GRAPHS 
 
A wheel graph Wn is the join of K1 and Cn. A graph W4  is shown in Figure 1. 
 

 
Figure-1: Wheel graph W4 
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A graph Wn has n + 1 vertices and 2n edges. In this graph, there are two types of status vertices as follows: 
 ( ) ( ){ }1 | ,nV u V W u nσ= ∈ =    |V1| = 1. 

( ) ( ){ }2 | 2 3 ,nV u V W u nσ= ∈ = −   |V2| = n. 
By calculation, we find that there are two types of status neighborhood vertices as given in Table 2. 
 

( ) ( )\n nu u V Wσ ∈  n(2n – 3) 5n – 6 
Number of vertices 1 n 

Table-2: Status neighborhood vertex partition of Wn 
 
In Wn ,we obtain that there are types of status edges as follows: 

( ) ( ) ( ){ }1 | 2 3 ,nE uv E W u v nσ σ= ∈ = = −   |E1| = n. 

( ) ( ) ( ){ }2 | ,   2 3 ,nE uv E W u n v nσ σ= ∈ = = −   |E2| = n. 
By calculation, in Wn, there are two types of status neighborhood edges as given in Table 3. 
 

( ) ( ) ( ), \n n nu v uv E Wσ σ ∈  (5n – 6, 5n – 6) (5n – 6, n(2n – 3)) 
Number of edges n n 

Table-3: Status neighborhood edge partition of Wn 
 
Theorem 7: The general vertex status neighborhood index of a wheel graph Wn is given by 

 ( ) ( )[ ] ( )2 3 5 6 .
a aa

nSN W n n n n= − + −                                                      (3) 
 
Proof: From definition and by using Table 2, we deduce 

 ( ) ( )
( )

( )[ ] ( )2 3 5 6 .
n

aa aa
n n

u V W
SN W u n n n nσ

∈

= = − + −∑  

We obtain the following results from Theorem 7. 
 
Corollary 7.1: Let Wn be a wheel graph with n + 1 vertices and 2n edges. Then 

(i) ( ) 4 3 24 13 51 36 .nSN W n n n n= + − +  

(ii) ( )
( ) ( )2 22

1 .
2 3 5 6

m
n

nSN W
n n n

= +
− −

 

(iii) ( ) ( ) ( )3 33 2 3 5 6 .nFSN W n n n n= − + −  

(iv) ( ) 27 9 .sn nT W n n= −  

(v) ( ) ( )
1 .

2 3 5 6n
nSNI W

n n n
= +

− −
 

(vi) ( )
( )

1 .
5 62 3

n
nSNZ W
nn n

= +
−−

 

 
Proof: Put a = 2, –2, 3, 1, – 1, –½ in equation (3), we obtain the desired results. 
 
Theorem 8: The F1-status neighborhood index and F1-status neighborhood polynomial of a wheel graph Wn are given 
by 

(i) ( ) 5 4 3 2
1 4 12 84 180 108 .nF SN W n n n n n= − + − +  

(ii) ( )
2 4 3 250 120 72 4 12 34 60 36

1 , .n n n n n n
nF SN W x nx nx− + − + − += +       

Proof:  
(i) By definition and by using Table 3, we derive 

 ( ) ( ) ( )
( )

2 2
1

n

n n n
uv E W

F SN W u vσ σ
∈

 = + ∑  

            ( ) ( ) ( ) ( )22 2 2 25 6 5 6 5 6 2 3n n n n n n n  = − + − + − + −     

      5 4 3 24 12 84 180 108 .n n n n n= − + − +  
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(ii) From definition and by using Table 3, we have 

 ( ) ( ) ( )

( )

2 2

1 , n n

n

u v
n

uv E W
F SN W x xσ σ+

∈

= ∑  

  ( ) ( ) ( ) ( )22 2 2 25 6 5 6 5 6 2 3n n n n nnx nx− + − − + −= +  

  
2 4 3 250 120 72 4 12 34 60 36 .n n n n n nnx nx− + − + − += +  

 
Theorem 9: The total status neighborhood polynomial and F-status neighborhood polynomial of a wheel graph Wn are 
given by 

(i) ( ) ( )2 3 5 6, .n n n
sn nT W x x nx− −= +  

(ii) ( ) ( ) ( )3 33 2 3 5 6, .n n n
nFSN W x x nx− −= +       

 
Proof:  
(i) By definition and by using Table 2, we obtain 
 ( ) ( )

( )

( )2 3 5 6, n

n

u n n n
sn n

u V W
T W x x x nxσ − −

∈

= = +∑  

(ii) From definition and by using Table 2, we have 

 ( ) ( )

( )

( ) ( )3 3 33 2 3 5 6, n

n

u n n n
n

u V W
FSN W x x x nxσ − −

∈

= = +∑  

 
5. RESULTS FOR FRIENDSHIP GRAPHS 
 
A friendship graph Fn is the graph obtained by taking n ≥ 2 copies of C3 with vertex in common. A graph F4 is shown 
in Figure 2. 

 
Figure-2: Friendship graph F4. 

 
A friendship graph Fn has 2n+1 vertices and 3n edges. In Fn, we obtain two types of status vertices as follows: 
 V1 = {u ∈ V(Fn) | σ(u) = 2n},   | V1 | = 1.  
 V2 = {u ∈ V(Fn) | σ(u) = 4n – 2},  | V2 | = 2n. 
 
By calculation, there are two types of status neighborhood vertices in Fn as given in Table 4.  
 

( ) ( )\n nu u V Fσ ∈  2n(4n – 2) 6n – 2 
Number of vertices 1 2n 

Table-4: Status neighborhood vertex partition of Fn 
 
In a graph Fn there are two types of status edges as follows: 
 ( ) ( ) ( ){ }1 | 4 2 ,nE uv E F u v nσ σ= ∈ = = −    |E1| = n. 

 ( ) ( ) ( ){ }2 | 2 ,   4 2 ,nE uv E F u n v nσ σ= ∈ = = −    |E2| = 2n. 
 
By calculation, we have two types of status neighborhood edges in Fn as given in Table 5.  
 

( ) ( ) ( ), \n n nu v uv E Fσ σ ∈  (6n – 2, 6n – 2) (6n – 2, 2n(4n – 2)) 
Number of edges n 2n 

Table-5: Status neighborhood edge partition of Fn 
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Theorem 10: The general vertex status neighborhood index of a friendship graph Fn is given by 

 ( )a
nSN F ( )[ ] ( )2 4 2 2 6 2 .

a an n n n= − + −                                                     (4) 
 
Proof: From definition and by using Table 4, we deduce 

 ( )a
nSN F ( )

( )
( )[ ] ( )2 4 2 2 4 2 .

n

aa a
n

u V F
u n n n nσ

∈

= = − + −∑  

We establish the following results by using Theorem 10. 
Corollary 10.1: Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(i) ( ) 4 3 264 8 32 8 .nS NF n n n n= + − +  

(ii) ( )
( ) ( )2 22

1 .
4 4 2 2 3 1

m
n

nSN F
n n n

= +
− −

 

(iii) ( ) ( ) ( )3 338 4 2 2 6 2 .nFNS F n n n n= − + −  

(iv) ( ) 220 8 .sn nT F n n= −  

(v) ( ) ( )
1 .

2 4 2 3 1n
nSNI F

n n n
= +

− −
 

(vi) ( )
( )
1 2 .

6 22 1
n

nSNZ F
nn n

= +
−−

 

 
Proof: Put a = 2, –2, 3, 1, – 1,  –½ in equation (4), we obtain the desired results. 
 
Theorem 11: The F1-status neighborhood index and F1-status neighborhood polynomial of a friendship graph Fn are 
given by 

(i) ( ) 5 4 3 2
1 128 128 176 96 16 .nF SN F n n n n n= − + − +  

(ii) ( ) ( ) ( ) ( )22 2 22 6 2 6 2 8 4
1 , 2 .n n n n

nF SN F x nx nx− − + −= +       
 
Proof:  
(i) By definition and by using Table 5, we deduce 

 ( ) ( ) ( )
( )

2 2
1

n

n n n
uv E F

F SN F u vσ σ
∈

 = + ∑  

       ( ) ( ) ( ) ( )22 2 2 26 2 6 2 2 6 2 8 4n n n n n n n  = − + − + − + −     

     5 4 3 2128 128 176 96 16 .n n n n n= − + − +  
(ii)  By using definition and Table 5, we derive 

 ( ) ( ) ( )

( )

2 2

1 , n n

n

u v
n

uv E F
F SN F x xσ σ+

∈

= ∑  

  ( ) ( ) ( ) ( )22 2 2 26 2 6 2 6 2 8 42n n n n nnx nx− + − − + −= +  

  ( ) ( ) ( )22 2 22 6 2 6 2 8 42n n n nnx nx− − + −= +  
 
Theorem 12: The total status neighborhood polynomial and F-status neighborhood polynomial of a friendship graph Fn 
are given by 

(i) ( ) ( )2 4 2 6 2, 2 .n n n
sn nT F x x nx− −= +  

(ii) ( ) ( ) ( )3 338 4 2 6 2, 2 .n n n
nFSN F x x nx− −= +       

 
Proof:  
(i) By using definition and Table 4, we obtain 
 ( ) ( )

( )

( )2 4 2 6 2, 2 .n

n

u n n n
sn n

u V F
T F x x x nxσ − −

∈

= = +∑  

(ii) From definition and by using Table 4, we deduce 

 ( ) ( )

( )

( ) ( )3 3 338 4 2 6 2, 2 .n

n

u n n n
n

u V F
FSN F x x x nxσ − −

∈

= = +∑  
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