THE EQUITABLE BONDAGE NUMBER OF A GRAPH

G. Deepak, N. D. Soner and Anwar Alwardi*
Department of Studies in Mathematics, University of Mysore, Mysore-570 006, India
E-mail: deepak1873@gmail.com, ndsoner@yahoo.co.in, a_wardi@hotmail.com

(Received on: 25-12-11; Accepted on: 02-01-12)

Abstract

A subset D of V is called an equitable dominating set iffor every $v \in V-D$ there exists a vertex $u \in D$ such that $u v \in$ $E(G)$ and $\mid \operatorname{deg}(u)-\operatorname{deg}(v) \leq 1$. The minimum cardinality of such a dominating set is called the equitable domination number and is denoted by $\gamma_{e}(G)$. We define the equitable bondage number $b_{e}(G)$ of a graph G to be the cardinality of a smallest set $X \subseteq E$ of edges for which $\gamma_{e}(G-X)>\gamma_{e}(G)$. Sharp bounds are obtained for $b_{e}(G)$ and the exact values are determined for some standard graphs.

Keywords: Graph, Bondage number, Equitable bondage number, Equitable domination number, Equitable domination.
Mathematics Subject Classification : 05C70.

INTRODUCTION:

The graphs considered here are finite, undirected without loops and multiple edges having p vertices and q edges. Any undefined term in this paper may be found in Harary [3]. A set D of vertices in a graph G is a dominating set if each vertex of G that is not in D is adjacent to at least one vertex of D. The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality of a dominating set of G. For a survey of results on domination (see [4]). A subset D of V is called an equitable dominating set if for every $v \in V-D$ there exists a vertex $u \in D$ such that $u v \in E(G)$ and $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq$ 1. The minimum cardinality of such a dominating set is denoted by $\gamma_{e}(\mathrm{G})$ and is called the equitable domination number of G. The bondage number $\mathrm{b}(\mathrm{G})$ of G is the minimum cardinally among the sets of edges $\mathrm{X} \subseteq \mathrm{E}$ such that $\gamma(\mathrm{G}-\mathrm{X})>$ $\gamma(\mathrm{G})$ (see [2]). In this paper we now define the equitable bondage number of a graph G . The equitable bondage number $b_{e}(G)$ of a graph G is the minimum cardinality of a set $F \subseteq E$ of edges for which $\gamma_{e}(G-F)>\gamma_{e}(G)$.

SOME EXACT VALUES:

In several instances we shall have cause to use the ceiling function of a number x ; that is denoted by $\lceil\mathrm{x}\rceil$ and takes the value of the least integer greater than or equal to x.

RESULTS:

Proposition 1: The equitable bondage number of the complete graph $K_{p}(p \geq 2)$ is $\quad b_{e}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.
Proof: If H is a spanning subgraph of K_{p} that is obtained by removing fewer than $\left\lceil\frac{p}{2}\right\rceil$ edges from K_{p}, then H contains a vertex of degree $\mathrm{p}-1$, whence $\gamma_{\mathrm{e}}(\mathrm{H})=1$. Thus $\mathrm{b}_{\mathrm{e}}\left(\mathrm{K}_{\mathrm{p}}\right) \geq\left\lceil\frac{\mathrm{p}}{2}\right\rceil$.

We consider two cases.
Case 1: If p is even, the removal of $\frac{p}{2}$ independent edges from K_{p} reduces the degree of each vertex to $p-2$ and therefore yields a graph H with equitable domination number $\gamma_{\mathrm{e}}(\mathrm{H})=2$.

Case 2: If p is odd, the removal of $\frac{\mathrm{p}-1}{2}$ independent edges from K_{p} leaves a graph having exactly one vertex of degree $p-1$, by removing one edge incident with this vertex, we obtain a graph H with $\gamma_{e}(H)=2$. In both cases, the graph H resulted from the removal of $\left\lceil\frac{p}{2}\right\rceil$ edges from K_{p}. Thus, $b_{e}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.

We next determine the equitable bondage numbers of the cycle C_{p} and path P_{p} of order p.
Lemma A[1]: The equitable domination numbers of the cycle and path of order p are respectively

$$
\begin{aligned}
& \gamma_{e}\left(C_{p}\right)=\left\lceil\frac{p}{3}\right\rceil \text { for } p \geq 3 \text { and } \\
& \gamma_{e}\left(P_{p}\right)=\left\lceil\frac{p}{3}\right\rceil \text { for } p \geq 1
\end{aligned}
$$

Theorem 2: Let $K_{m, n}$ be a complete bipartite graph with $|m-n| \leq 1$ and $m \leq n$ then $b_{e}\left(k_{m, n}\right)=m$.
Proof : Let $V=V_{1} \cup V_{2}$ be the vertex set of $K_{m, n}$ where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. Let $v \in V_{2}$ then by removing all edges incident with v we obtain a graph H containing two components K_{1} and $K_{m, n-1}$. Hence

$$
\begin{aligned}
\gamma_{\mathrm{e}}(\mathrm{H}) & =\gamma_{\mathrm{e}}\left(\mathrm{~K}_{1}\right)+\gamma_{\mathrm{e}}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}-1}\right) \\
& =1+\gamma_{\mathrm{e}}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right) \\
& >\gamma_{\mathrm{e}}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathrm{b}_{\mathrm{e}}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right) & =\operatorname{deg}(\mathrm{v}) \\
& =\left|\mathrm{V}_{\mathrm{l}}\right| \\
& =\mathrm{m} .
\end{aligned}
$$

Theorem 3: The equitable bondage number of the p-cycle is

$$
\mathrm{b}_{\mathrm{e}}\left(\mathrm{C}_{\mathrm{p}}\right)=\left\{\begin{array}{l}
3 \text { if } \mathrm{p} \equiv 1(\bmod 3) \\
2 \text { otherwise }
\end{array}\right.
$$

Proof: Since $\gamma_{e}\left(C_{p}\right)=\gamma_{e}\left(P_{p}\right)$ for $p \geq 3$, we see that $b_{e}\left(C_{p}\right) \geq 2$. If $p \equiv 1(\bmod 3)$ the removal of two edges from C_{p} leaves a graph H consisting of two paths X and Y. If X has order p_{1} and Y has order p_{2} then either $p_{1} \equiv p_{2} \equiv 2(\bmod 3)$ or without loss of generality, $\mathrm{p}_{1} \equiv 0(\bmod 3)$ and $\mathrm{p} 2 \equiv 1(\bmod 3)$. In the former case,

$$
\begin{aligned}
\gamma_{\mathrm{e}}(\mathrm{H}) & =\gamma_{\mathrm{e}}(\mathrm{X})+\gamma_{\mathrm{e}}(\mathrm{Y})=\left\lceil\frac{\mathrm{p}_{1}}{3}\right\rceil+\left\lceil\frac{\mathrm{p}_{2}}{3}\right\rceil \\
& =\frac{\left(\mathrm{p}_{1}+1\right)}{3}+\frac{\left(\mathrm{p}_{2}+1\right)}{3} \\
& =\frac{\mathrm{p}+2}{3}>\left\lceil\frac{\mathrm{p}}{3}\right\rceil=\gamma_{\mathrm{e}}\left(\mathrm{C}_{\mathrm{p}}\right)
\end{aligned}
$$

In the latter case,

$$
\begin{aligned}
\gamma_{\mathrm{e}}(\mathrm{H}) & =\frac{\mathrm{p}_{1}}{3}+\frac{\left(\mathrm{p}_{2}+2\right)}{3} \\
& =\frac{(\mathrm{p}+2)}{3}>\left\lceil\frac{\mathrm{p}}{3}\right\rceil=\gamma_{\mathrm{e}}\left(\mathrm{C}_{\mathrm{p}}\right)
\end{aligned}
$$

In either case, when $p \equiv 1(\bmod 3)$, we have $\gamma_{e}\left(C_{p}\right) \geq 3$. To obtain the upper bounds that by trichotomy, will yield the desired equalities of our theorem's statement we consider two cases.

Case 1: Suppose that $\mathrm{p} \equiv 0,2(\bmod 3)$. The graph H obtained by removing two adjacent edges from C_{p} consists of an equitable isolated vertex and a path of order

$$
\mathrm{p}-1 . \text { Thus, }
$$

$$
\gamma_{\mathrm{e}}(\mathrm{H}) \quad=1+\gamma_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{p}-1}\right)=1+\left\lceil\frac{\mathrm{p}-1}{3}\right\rceil
$$

$$
=1+\left\lceil\frac{\mathrm{p}}{3}\right\rceil>\left\lceil\frac{\mathrm{p}}{3}\right\rceil=\gamma_{\mathrm{e}}\left(\mathrm{C}_{\mathrm{p}}\right)
$$

hence $b_{e}\left(C_{p}\right) \leq 2$ in this case. Combining this with the upper bound obtained earlier, we have $b_{e}\left(C_{p}\right)=2$ if $p \equiv 0,2(\bmod$ $3)$.

Case 2: Suppose now that $\mathrm{p} \equiv 1(\bmod 3)$. The graph H resulting from the deletion of three consecutive edges of C_{p} consists of two equitable isolated vertices and a path of order $n-2$. Thus,

$$
\begin{aligned}
\gamma_{\mathrm{e}}(\mathrm{H}) & =2+\left\lceil\frac{(\mathrm{p}-2)}{3}\right\rceil=2+\frac{(\mathrm{p}-1)}{3} \\
& =2+\left\lceil\frac{\mathrm{p}}{3}\right\rceil-1>\left\lceil\frac{\mathrm{p}}{3}\right\rceil=\gamma_{\mathrm{e}}\left(\mathrm{C}_{\mathrm{p}}\right)
\end{aligned}
$$

so that $b_{e}\left(C_{p}\right) \leq 3$. With the earlier inequality, we conclude that $b_{e}\left(C_{p}\right)=3$ when $p \equiv 1(\bmod 3)$.
As an immediate corollary to the Theorem 3 we have the following
Corollary 3.1: The equitable bondage number of the path of order $(p \geq 2)$ is given by

$$
\mathrm{b}_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{p}}\right)=\left\{\begin{array}{l}
2 \text { if } \mathrm{p} \equiv 1(\bmod 3) \\
1 \text { otherwise }
\end{array}\right.
$$

Theorem 4: The equitable bondage number of the wheel W_{p} is

$$
\mathrm{b}_{\mathrm{e}}\left(\mathrm{~W}_{\mathrm{p}}\right)=\left\{\begin{array}{l}
3 \text { if } \mathrm{p} \equiv 2(\bmod 3) \\
2 \text { otherwise }
\end{array}\right.
$$

Proof: Let $\mathrm{W}_{\mathrm{p}}=\mathrm{K}_{1}+\mathrm{C}_{\mathrm{p}-1}$ and label $\mathrm{C}_{\mathrm{p}-1}: \mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{p}-1}$ be the edges of $\mathrm{C}_{\mathrm{p}-1}$. We consider two cases.
Case 1: Suppose that $p \equiv 2(\bmod 3)$. The graph H obtained by removing three consecutive edges e_{1}, e_{2}, e_{3} on C_{p-1} form W_{p} consists of three equitable isolated vertices and a path of order $\mathrm{p}-3$. Thus,

$$
\begin{aligned}
\gamma_{e}(\mathrm{H}) & =3+\gamma_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{p}-3}\right) \\
& =3+\left\lceil\frac{\mathrm{p}-3}{3}\right\rceil>\gamma_{\mathrm{e}}\left(\mathrm{~W}_{\mathrm{p}}\right)
\end{aligned}
$$

Hence, $\quad b_{e}\left(W_{p}\right)=3$.
Case 2: Suppose that $p \not \equiv 2(\bmod 3)$. The graph H resulting from the deletion of two adjacent edges e_{1} and e_{2} on C_{p-1} from W_{p} consists of two equitable isolated vertices and a path of order $\mathrm{p}-2$. Thus,

$$
\begin{aligned}
\gamma_{\mathrm{e}}(\mathrm{H}) & =2+\gamma_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{p}-2}\right) \\
& =2+\left\lceil\frac{\mathrm{p}-2}{3}\right\rceil>\gamma_{\mathrm{e}}\left(\mathrm{~W}_{\mathrm{p}}\right)
\end{aligned}
$$

Hence, $b_{e}\left(W_{p}\right)=2$.

Theorem 5: If T is non trivial tree, then $\mathrm{b}_{\mathrm{e}}(\mathrm{T}) \leq 2$.
Proof: If T is of order 2 or 3 then it is clear that $b_{e}(T)=1$. We are interested here about the equitable edge in the tree. Suppose that T has at least four vertices, then we can classify trees into 2 cases.

Case 1: According to the end edge of the trees, if all the end edge are not equitable then by deleting any equitable edge the equitable domination number will be increasing i.e., $\mathrm{b}_{\mathrm{e}}(\mathrm{T})=1$.

Case 2: If the end edge are equitable then we have two sub cases, if there exists leaf which is P_{4} then $b_{e}(T)=2$ otherwise $\mathrm{b}_{\mathrm{e}}(\mathrm{T})=1$.

Hence for any nontrivial tree then $\mathrm{b}_{\mathrm{e}}(\mathrm{T}) \leq 2$.

Theorem 6: If G be any graph and x be equitable edge then $\gamma(\mathrm{G}-\mathrm{x}) \geq \gamma(\mathrm{G})$.
Proof: Since we have a theorem, for any edge x of a graph, $\gamma(\mathrm{G}-\mathrm{x}) \geq \gamma(\mathrm{G})$ and from the definition of equitable domination number if the graph without any equitable isolated vertex then the $\gamma_{\mathrm{e}}(\mathrm{G})=\gamma(\mathrm{G})$ and of course if we delete any equitable edge x from the graph G we get $\gamma(\mathrm{G}-\mathrm{x}) \geq \gamma(\mathrm{G})$.

Theorem 7: If G is a connected graph of order $p \geq 2$, then $b_{e}(G) \leq p-1$.
Proof : Let u and v be adjacent vertices with $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$ and $\operatorname{deg}(u) \leq \operatorname{deg}(v)$. Let E_{u} denote the set of edges incident with u. Then $\gamma_{e}\left(G-E_{u}\right)=\gamma_{e}(u)$ and $\gamma_{e}(G-u)=\gamma_{e}(G)-1$. Also, if D denotes the union of all minimum equitable dominating sets for $G-u$, then u is adjacent in G to no vertex of D. Hence $\left|E_{u}\right| \leq p-1-|D|$ and $u \notin D$. Now if F_{v} denotes the set of edges from v to a vertex in D, then since $v \notin D$ we must have

$$
\begin{aligned}
& \gamma_{e}\left(G-u-F_{v}\right)>\gamma_{e}(G-u) \text { or equivalently, } \\
& \gamma_{e}\left(G-u-F_{v}\right)>\gamma_{e}(G)-1
\end{aligned}
$$

Thus,

$$
\gamma_{\mathrm{e}}\left(\mathrm{G}-\left(\mathrm{E}_{\mathrm{u}} \cup \mathrm{~F}_{\mathrm{v}}\right)\right)>\gamma_{\mathrm{e}}(\mathrm{G}) \text { and }
$$

we see that,

$$
\begin{aligned}
\mathrm{b}_{\mathrm{e}}(\mathrm{G}) & \leq\left|\mathrm{E}_{\mathrm{u}} \cup \mathrm{~F}_{\mathrm{v}}\right| \\
& =\left|\mathrm{E}_{\mathrm{u}}\right|+\left|\mathrm{F}_{\mathrm{v}}\right| \\
& \leq(\mathrm{p}-1-|\mathrm{D}|)+|\mathrm{D}| \\
& =\mathrm{p}-1
\end{aligned}
$$

REFERENCES:

[1] K. D. Dharmalingam, Studies in Graph Theory - Equitable Domination and bottleneck domination, Ph.D. Thesis (2006).
[2] J. F. Fink, M.S. Jackobson, L. F. Kinch and J. Roberts. The bondage number of a graph. Discrete Math. 86 (1990) 47-57.
[3] F. Harary, Graph Theory, Addison-Wessley, Reading Mass. (1969).
[4] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).

