FIXED POINT THEOREMS ON COMPLETE G-CONE METRIC SPACE

Varghese P.G* and Dersanambika K.S**
 *Department of Mathematics, Marthoma College, Thiruvalla - 689103, Kerala, India
 E-mail: pg.varghese@ymail.com

**Department of Mathematics, Fatima Mata National College, Kollam-691001, Kerala, India
E-mail: dersanapdf@yahoo.com
(Received on: 10-12-11; Accepted on: 28-12-11)

Abstract

The aim of this paper is to discuss some fixed point theorems for contractive mappings in comple G - cone metric space.

Key Words and Phrases: G- cone metric space, Fixed points.
2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION:

It is well known that Banach contraction principle is a fundamental result in fixed point theory. Z. Mustafa, and B. Sims [8] introduced an appropriate generalization of metric space and obtained fixed point theorems for different contractive mappings in G- metric space. Huang and Zhang [5] introduced the concept of cone metric space. The results in [5] where generalized by Sh. Rezapour and R. Hamlbarani [9] by omitting the normality condition, which is a mile stone in developing fixed point theory in cone metric space. Ismat Beg. Mujahid Abbas and Talat Nazir [6] introduced the concept of G - cone metric space by replacing the set of real numbers by ordered Banach space. G- cone metric space is more general than that of a G - metric space and cone metric space. Here we recall some definition and results in [5] and [6].

2. PRELIMINARIES

Definition: 2.1 Let E be a real Banach space. A subset $\mathrm{P} \subseteq \mathrm{E}$ is said to be a cone if and only if
(1) P is closed, nonempty and $\mathrm{P} \neq\{0\}$
(2) $a, b \in R, a, b \geq 0, x, y \in P$ implies $a x+b y \in P$
(3) $\mathrm{P} \cap(-\mathrm{P})=\{0\}$

For a given cone P subset of E , we define a partial ordering \leq with respect to P by $\mathrm{x} \leq \mathrm{y}$ if and only if $\mathrm{y}-\mathrm{x} \in \mathrm{P}$. We shall write $\mathrm{x}<\mathrm{y}$ to indicate that $\mathrm{x} \leq \mathrm{y}$ but $\mathrm{x} \neq \mathrm{y}$ while $\mathrm{x} \ll \mathrm{y}$ will stand for $\mathrm{y}-\mathrm{x} \in \operatorname{intP}$ where intP denotes interior of P .

Here we recall some definition and results in [6] which will be used in the theorems.
Definition: 2.2 Let X be a nonempty set. Suppose a mapping G: $X \times X \times X \rightarrow E$ satisfies
(1) $G(x, y, z)=0$ if and only if $x=y=z$.
(2) $0<G(x, y, z)$; whenever $x \neq y$, for all $x, y \in X$
(3) $G(x, y, z)=G(x, z, y)=G(y, x, z)=$ \qquad (symmetric in all the three variables.)
(4) $G(x, x, y) \leq G(x, y, z)$; whenever $y \neq z$.
(5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$

Then G is called a generalized cone metric on X , is called a generalized cone metric space or G - cone metric space.
The idea of a G - cone metric space is more than that of a cone metric space.

Definition: 2.3 Let X be a G - cone metric space $\left\{x_{n}\right\}$ be a sequence in X
(1) $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is said to be a Cauchy sequence if for every $\mathrm{c} \in \mathrm{E}$ with $0 \ll \mathrm{c}$, there is a positive integer N such that for all $n, m, 1>N, G\left(x_{n}, x_{m}, x_{1}\right) \leq c$
(2) $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is said to be a convergent sequence if for every $\mathrm{c} \in \mathrm{E}$ with $0 \ll \mathrm{c}$, there is a positive integer N such that for all $m, n>N, G\left(x_{m}, x_{n}, x\right) \leq c$ for some fixed x in X.
A G - cone metric space X is said to be complete if every Cauchy sequence in X convergence.
Lemma: 2.1 Let X be a G - cone metric space $\left\{x_{m}\right\},\left\{y_{n}\right\},\left\{z_{1}\right\}$ be sequences in X such that $x_{m} \rightarrow x, y_{n} \rightarrow y$, $\mathrm{z}_{1} \rightarrow \mathrm{z}$, then $\mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{1}\right) \rightarrow \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

Lemma: 2.2 Let $\left\{x_{n}\right\}$ be a sequence in G - cone metric space X and $x \in X$. If $\left\{x_{n}\right\}$ converges to x, and $\left\{x_{n}\right\}$ converges to y, then $x=y$.

Lemma: 2.3 Let $\left\{x_{n}\right\}$ be a sequence in G - cone metric space X and $x \in X$. If $\left\{x_{n}\right\}$ converges to x, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Lemma: 2.4 Let $\left\{x_{n}\right\}$ be a sequence in a G - cone metric space X and if $\left\{x_{n}\right\}$ is a Cauchy sequence, then $\mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{l}}\right) \rightarrow 0$ as $\mathrm{m}, \mathrm{n}, \mathrm{l} \rightarrow \infty$.

3. MAIN RESULTS:

Theorem: 3.1 Let T be a mapping on a complete G - cone metric space X into itself that satisfies

$$
\begin{equation*}
G(T x, T y, T y) \leq k[G(x, T x, T x) \vee G(y, T y, T y)] \tag{1}
\end{equation*}
$$

For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, and $0 \leq \mathrm{k} \leq 1$. Then T has a unique fixed point.
Proof: Let x_{0} be an arbitrary point in X. Define $\left\{x_{n}\right\}$ in X such that $x_{n}=T^{n} x_{0}$. If $T^{n+1} x_{0}=T^{n} x_{0}$ for some n, then T has a fixed point. Assume $T^{n+1} x_{0} \neq T^{n} x_{0}$ for each n. By (1)

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{k}\left[\mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) \vee \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)\right] \tag{2}
\end{equation*}
$$

If

$$
G\left(x_{n-1}, x_{n}, x_{n}\right) \leq G\left(x_{n}, x_{n+1}, x_{n+1}\right)
$$

Then

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k G\left(x_{n}, x_{n+1}, x_{n+1}\right)
$$

That is

$$
(1-\mathrm{k}) \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{x}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq 0
$$

Since $1-\mathrm{k}>0$

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right)=0
$$

implies $\mathrm{X}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1}$ which contradicts $\mathrm{x}_{\mathrm{n}} \neq \mathrm{x}_{\mathrm{n}+1}$ for each n . Therefore

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq G\left(x_{n-1}, x_{n}, x_{n}\right)
$$

Hence

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) \text { for every } \mathrm{n}
$$

Therefore

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{k}^{\mathrm{n}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right)
$$

Let $\mathrm{n}>\mathrm{m}$, then

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) & \leq \mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}+1}, \mathrm{x}_{\mathrm{m}+1}\right)+\ldots \ldots \ldots+\mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) \\
& \leq\left(\mathrm{k}^{\mathrm{m}}+\mathrm{k}^{\mathrm{m}+1}+\ldots \ldots \ldots+\mathrm{k}^{\mathrm{n}-1}\right) \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right)
\end{aligned}
$$

$$
\leq \frac{\mathrm{k}^{\mathrm{m}}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right)
$$

Let $\mathrm{c}>0$, then there is a $\delta>0$ such that $\mathrm{c}+\mathrm{N}_{\delta}(0) \subseteq \mathrm{P}$ where $\mathrm{N}_{\delta}(0)=\{\mathrm{y} \in \mathrm{E}:\|\mathrm{y}\|<\delta\}$. Since $\mathrm{k}<1$ there is a positive integer N such that $\left\|\frac{\mathrm{k}^{\mathrm{m}}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right)\right\| \leq \delta$ for every $\mathrm{m} \geq \mathrm{N}$.

Therefore

$$
\frac{\mathrm{k}^{\mathrm{m}}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \in \mathrm{N}_{\delta}(0)
$$

Hence

$$
-\frac{\mathrm{k}^{\mathrm{m}}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \in \mathrm{N}_{\delta}(0)
$$

Therefore

$$
\mathrm{c}-\frac{\mathrm{k}^{\mathrm{m}}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \in \mathrm{c}+\mathrm{N}_{\delta}(0) \subseteq \mathrm{P}
$$

That is

$$
\frac{\mathrm{k}^{\mathrm{m}}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \leq \mathrm{c} \text { for } \mathrm{m} \geq \mathrm{N}
$$

Hence by (3)

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{l}}\right) \leq \mathrm{cn}, \mathrm{~m} \geq \mathrm{N}
$$

Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Since X is complete there is an $\mathrm{z} \in \mathrm{X}$ such that $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to z .
Now we shall prove z is a fixed point of T . We have

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Tz}, \mathrm{Tz}\right) \leq \mathrm{k}\left\{\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \vee \mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz})\right\}
$$

If

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz})
$$

Then $\quad G\left(x_{n+1}, T z, T z\right) \leq k G(z, T z, T z)$
Letting $\mathrm{n} \rightarrow \infty$, we get

$$
\mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}) \leq \mathrm{kG}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz})
$$

That is

$$
(1-\mathrm{k}) \mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}) \leq 0
$$

But $1-\mathrm{k}>0$. Therefore $\mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz})=0$. Hence $\mathrm{Tz}=\mathrm{z}$. If

$$
\mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}) \leq \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

Then

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{Tz}, \mathrm{Tz}\right) \leq \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

Letting $\mathrm{n} \rightarrow \infty$ we get

$$
\mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}) \leq \mathrm{kG}(\mathrm{z}, \mathrm{z}, \mathrm{z})=0
$$

which implies $\mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz})=0$, hence $\mathrm{Tz}=\mathrm{z}$. Therefore z is a fixed point of T .
Next we shall prove the fixed point is unique. Let ' z ', be another fixed point of T. So $\mathrm{Tz}^{\prime}=\mathrm{z}^{\prime}$. We have

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right) & =\mathrm{G}\left(\mathrm{Tz}, \mathrm{Tz}^{\prime}, \mathrm{Tz}\right) \\
& \leq \mathrm{k}\left\{\mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}) \vee \mathrm{G}\left(\mathrm{z}^{\prime}, \mathrm{Tz} z^{\prime}, \mathrm{Tz} z^{\prime}\right)\right\} \\
& =\mathrm{k}\left\{\mathrm{G}(\mathrm{z}, \mathrm{z}, \mathrm{z}) \vee \mathrm{G}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right)\right\} \\
\mathrm{G}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right) & =0
\end{aligned}
$$

Which implies $\mathrm{z}=\mathrm{z}^{\prime}$. Hence the theorem.

Theorem: 3.2 Let (X, G) be a complete G - cone metric space, and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping satisfying

$$
\begin{equation*}
G(T x, T y, T y) \leq k\{G(x, T y, T y) \vee G(y, T x, T x) \vee G(y, T y, T y)\} \tag{4}
\end{equation*}
$$

For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{k} \in[0,1 / 2]$. Then T has a unique fixed point.
Proof: $G(T x, T y, T y) \leq\{G(x, T y, T y) \vee G(y, T x, T x) \vee G(y, T y, T y)\}$
Therefore

$$
\begin{align*}
& G(T x, T y, T y) \leq k G(x, T y, T y) \tag{5}\\
\text { Or } & G(T x, T y, T y) \leq k G(y, T x, T x) \tag{6}
\end{align*}
$$

Or $\quad G(T x, T y, T y) \leq k G(y, T y, T y)$
Let x_{0} be an arbitrary element in X. Define a sequence $\left\{x_{n}\right\}$ in X as follows $x_{1}=T x_{0}, x_{2}=T x_{1}=T^{2} x_{0}, \ldots \ldots \ldots \ldots \ldots \ldots$ $x_{n}=T x_{n-1}=T^{n} x_{0}$. If $x_{n}=x_{n+1}$ for some n, then T has a fixed point. Assume $x_{n} \neq x_{n+1}$ for each n. By (5).

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

We have

$$
G\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \leq G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)
$$

Therefore

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{kG}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

That is

$$
(1-\mathrm{k}) \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)
$$

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \frac{\mathrm{k}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)
$$

Let $\mathrm{p}=\frac{\mathrm{k}}{1-\mathrm{k}}<1$ since $\mathrm{k}<1 / 2$. Hence

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{pG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) \text { for every } \mathrm{n}
$$

So

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq p^{n} G\left(x_{0}, x_{1}, x_{1}\right)
$$

Let $\mathrm{n}>\mathrm{m}$

$$
\begin{align*}
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) & \leq \mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}+1}, \mathrm{x}_{\mathrm{m}+1}\right)+\ldots \ldots \ldots . . \mathrm{G}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) \\
& \leq\left(\mathrm{p}^{\mathrm{m}}+\mathrm{p}^{\mathrm{m}+1}+\ldots \ldots \ldots+\mathrm{p}^{\mathrm{n}+1}\right) \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \\
& \leq \frac{\mathrm{p}^{\mathrm{m}}}{1-\mathrm{p}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \tag{8}
\end{align*}
$$

Let $\mathrm{c} \geq 0$, then there is a $\delta>0$ such that $\mathrm{c}+\mathrm{N}_{\delta}(0) \subseteq \mathrm{P}$. Since $\mathrm{P}<1$ for $\delta>0$, there is a positive integer N such that $\left\|\frac{p^{m}}{1-p} G\left(x_{0}, x_{1}, x_{1}\right)\right\|<\delta$ for $m \geq N$. Hence $\left\|-\frac{p^{m}}{1-p} G\left(x_{0}, x_{1}, x_{1}\right)\right\|<\delta$ for $m \geq N$.
Therefore $\mathrm{c}-\frac{\mathrm{p}^{\mathrm{m}}}{1-\mathrm{p}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \in$. That is $\frac{\mathrm{p}^{\mathrm{m}}}{1-\mathrm{p}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \leq \mathrm{c}$. By (8) $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}}\right) \leq \mathrm{c}$ for $\mathrm{n} \geq \mathrm{m}$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence. But X is complete. Therefore there exist an $z \in X$ such that $X_{n} \rightarrow z$.

Now we shall prove $\mathrm{Tz}=\mathrm{z}$, we have by (5)

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tz}, \mathrm{Tz}\right) \leq \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{Tz}, \mathrm{Tz}\right)
$$

Letting $\mathrm{n} \rightarrow \infty$ we get

$$
\mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}) \leq \mathrm{k} \mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz})
$$

That is

$$
(1-\mathrm{k}) \mathrm{G}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}) \leq 0
$$

But $(1-k)>0$, therefore $G(z, T z, T z)=0$. Hence $T z=z$. Therefore z is a fixed point of T. To prove z is unique. If possible z^{\prime} is another fixed point of T, therefore $T z^{\prime}=z^{\prime}$. Now

$$
\mathrm{G}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right)=\mathrm{G}\left(\mathrm{Tz}, \mathrm{Tz}^{\prime}, \mathrm{Tz}^{\prime}\right) \leq \mathrm{kG}\left(\mathrm{z}, \mathrm{Tz}^{\prime}, \mathrm{Tz}^{\prime}\right)=\mathrm{kG}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right)
$$

That is

$$
(1-\mathrm{k}) \mathrm{G}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right) \leq 0
$$

But $1-\mathrm{k}>0$, hence $\mathrm{G}\left(\mathrm{z}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right)=0$ which implies $\mathrm{z}=\mathrm{z}^{\prime}$.
By (6) we have

$$
G(T x, T y, T y) \leq k G(y, T x, T x)
$$

Hence

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) & =\mathrm{kG}\left(T \mathrm{x}_{\mathrm{n}-1}, T x_{\mathrm{n}}, T x_{\mathrm{n}}\right) \\
& \leq \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}}, T \mathrm{x}_{\mathrm{n}-1}, T x_{\mathrm{n}-1}\right) \\
& =\mathrm{kGG}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) \\
& =0
\end{aligned}
$$

Therefore $x_{n}=x_{n+1}$ for each n. Therefore $\left\{x_{n}\right\}$ converges to x_{0} and is a unique fixed point of T.
For case (3) we have

$$
G(T x, T y, T y) \leq k G(y, T y, T y)
$$

Hence

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

That is

$$
(1-\mathrm{k}) \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right) \leq 0
$$

Since 1-k $>0, G(x, x, x)=0$ which implies $x_{n}=x_{n+1}$ for each n. Hence $\left\{x_{n}\right\}$ converges to x_{0} and x_{0} is a fixed point of T. Hence the theorem.

Corollary: 3.1 Let (X, G) be a complete G - cone metric space and let T : $X \rightarrow X$ be a mapping satisfying $G(T x, T y, T z) \leq k \vee\{G(x, T y, T y), G(x, T z, T z), G(y, T x, T x)$

$$
\begin{equation*}
G(y, T z, T z), G(z, T x, T x), G(z, T y, T y)\} \tag{9}
\end{equation*}
$$

For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, where $\mathrm{k} \in[0,1)$. Then T has a unique fixed point.
Proof: Put $\mathrm{z}=\mathrm{y}$ in (9) we get

$$
G(T x, T y, T y) \leq k \vee\{G(x, T y, T y), G(y, T x, T x), G(y, T y, T y)\}(10)
$$

Hence by the theorem (2) T has a unique fixed point.
Corollary: 3.2 Let (X, G) be a complete G - cone metric space and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping satisfying

$$
\begin{align*}
& G\left(T^{m} x, T^{m} y, T^{m} z\right) \leq k \vee\left\{G\left(x, T^{m} y, T^{m} y\right), G\left(x, T z, T^{m} z\right),\right. \\
& G\left(y, T^{m} x, T x\right), G\left(y, T^{m} z, T^{m} z\right), \\
& G\left(z, T^{m} x, T^{m} x\right), G\left(z, T^{m} y, T^{m} y\right) \tag{11}
\end{align*}
$$

For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, for some $\mathrm{m} \in \mathrm{N}, \mathrm{k} \in[0,1)$. Then T has a unique fixed point.

Proof: Let $y=z$, then (11) becomes
$G\left(T^{m} x, T^{m} y, T^{m} y\right) \leq k \vee\left\{G\left(x, T^{m} y, T^{m} y\right), G\left(y, T^{m} x, T^{m} x\right), G\left(y, T^{m} y, T^{m} y\right\}\right.$
By theorem (2) T^{m} has a unique fixed point z. Again $T^{m}(T z)=T^{m+1} z=T\left(T^{m} z\right)$. Therefore $T z$ is also a fixed point of T. But fixed point is unique. Therefore $\mathrm{Tz}=\mathrm{z}$. Hence T has a unique fixed point.

REFERENCES:

[1] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric space, J. Math. Anal. Appl. 341, 2008, pp 416-420.
[2] K. Deimling, Non linear functional analysis, Springer - Verlag, 1985.
[3] Di Bari, and Vetro P, φ - pairs and common fixed points in cone metric spaces, Rend. Cric. Mat. Palermo 57, 2008, pp 279-285.
[4] Hicks. T.L, and Rhoades. B.E., Fixed point theory in symmetric space with applications to probabilistic spaces, Nonlinear Analysis 36, 1999, pp 331-344.
[5] L.G. Huang, X. Zhang, Cone metric space and fixed point theorems, Math. Anal. Appl. 332 (2), 2007, pp 14681476.
[6] Ismat Beg, Mujahid Abbas, Talat Nazir, Generalised Cone Metric space, The journal of Nonlinear Science and Applications 3(1), 2010, pp 21-31.
[7] D. Ilic and V. Rakoevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2), 2008, pp 876-882.
[8] Z. Mustafa and B. Sims, A new approach to Generalised Metric Space. J. Nonlinear and Convex Anal. 7(2), 2006, pp 286 - 297.
[9] Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone Metric space and Fixed point Theorems of contractive mappings". J. Math. Anal. Appl. 345, 2008, pp 719-724.
[10] I. Sahin and M. Telci, Fixed points of contractive mapping on complete cone metric spaces, Hacettepe Journal of Mathematics and Statistics, 38 (1), 2009, pp 59-67.

