

FIXED POINT THEOREMS ON COMPLETE G-CONE METRIC SPACE

Varghese P.G* and Dersanambika K.S**

^{*}Department of Mathematics, Marthoma College, Thiruvalla – 689103, Kerala, India E-mail: pg.varghese@ymail.com

**Department of Mathematics, Fatima Mata National College, Kollam-691001, Kerala, India E-mail: dersanapdf@yahoo.com

(Received on: 10-12-11; Accepted on: 28-12-11)

ABSTRACT

The aim of this paper is to discuss some fixed point theorems for contractive mappings in comple G- cone metric space.

Key Words and Phrases: G- cone metric space, Fixed points.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION:

It is well known that Banach contraction principle is a fundamental result in fixed point theory. Z. Mustafa, and B. Sims [8] introduced an appropriate generalization of metric space and obtained fixed point theorems for different contractive mappings in G- metric space. Huang and Zhang [5] introduced the concept of cone metric space. The results in [5] where generalized by Sh. Rezapour and R. Hamlbarani [9] by omitting the normality condition, which is a mile stone in developing fixed point theory in cone metric space. Ismat Beg. Mujahid Abbas and Talat Nazir [6] introduced the concept of G – cone metric space by replacing the set of real numbers by ordered Banach space. G- cone metric space is more general than that of a G – metric space and cone metric space. Here we recall some definition and results in [5] and [6].

2. PRELIMINARIES:

Definition: 2.1 Let E be a real Banach space. A subset $P \subseteq E$ is said to be a cone if and only if

- (1) P is closed, nonempty and $P \neq \{0\}$
- (2) $a, b \in R, a, b \ge 0, x, y \in P$ implies $ax + by \in P$
- (3) $P \cap (-P) = \{0\}$

For a given cone P subset of E, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write x < y to indicate that $x \leq y$ but $x \neq y$ while x << y will stand for $y - x \in$ intP where intP denotes interior of P.

Here we recall some definition and results in [6] which will be used in the theorems.

Definition: 2.2 Let X be a nonempty set. Suppose a mapping G: $X \times X \times X \rightarrow E$ satisfies

- (1) G(x, y, z) = 0 if and only if x = y = z.
- (2) 0 < G(x, y, z); whenever $x \neq y$, for all $x, y \in X$
- (3) $G(x, y, z) = G(x, z, y) = G(y, x, z) = \dots$ (symmetric in all the three variables.)
- (4) $G(x, x, y) \leq G(x, y, z)$; whenever $y \neq z$.
- (5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$

Then G is called a generalized cone metric on X, is called a generalized cone metric space or G – cone metric space.

The idea of a G – cone metric space is more than that of a cone metric space.

Definition: 2.3 Let X be a G – cone metric space $\{x_n\}$ be a sequence in X

- (1) $\{x_n\}$ is said to be a Cauchy sequence if for every $c \in E$ with $0 \ll c$, there is a positive integer N such that for all n, m, l > N, $G(x_n, x_m, x_l) \le c$
- (2) $\{x_n\}$ is said to be a convergent sequence if for every $c \in E$ with $0 \ll c$, there is a positive integer N such that for all m, n > N, $G(x_m, x_n, x) \le c$ for some fixed x in X.
- A G cone metric space X is said to be complete if every Cauchy sequence in X convergence.

Lemma: 2.1 Let X be a G – cone metric space $\{x_m\}$, $\{y_n\}$, $\{z_l\}$ be sequences in X such that $x_m \to x$, $y_n \to y$, $z_l \to z$, then $G(x_m, y_n, z_l) \to G(x, y, z)$.

Lemma: 2.2 Let $\{x_n\}$ be a sequence in G – cone metric space X and $x \in X$. If $\{x_n\}$ converges to x, and $\{x_n\}$ converges to y, then x = y.

Lemma: 2.3 Let $\{x_n\}$ be a sequence in G – cone metric space X and $x \in X$. If $\{x_n\}$ converges to x, then $\{x_n\}$ is a Cauchy sequence.

Lemma: 2.4 Let $\{x_n\}$ be a sequence in a G – cone metric space X and if $\{x_n\}$ is a Cauchy sequence, then $G(x_m, x_n, x_1) \rightarrow 0$ as $m, n, l \rightarrow \infty$.

3. MAIN RESULTS:

Theorem: 3.1 Let T be a mapping on a complete G – cone metric space X into itself that satisfies

$$G(Tx, Ty, Ty) \le k [G(x, Tx, Tx) \lor G(y, Ty, Ty)]$$

$$(1)$$

For all $x, y \in X$, and $0 \le k \le 1$. Then T has a unique fixed point.

Proof: Let x_0 be an arbitrary point in X. Define $\{x_n\}$ in X such that $x_n = T^n x_0$. If $T^{n+1} x_0 = T^n x_0$ for some n, then T has a fixed point. Assume $T^{n+1}x_0 \neq T^n x_0$ for each n. By (1)

$$G(x_n, x_{n+1}, x_{n+1}) \le k \left[G(x_{n-1}, x_n, x_n) \lor G(x_n, x_{n+1}, x_{n+1}) \right]$$
(2)

If

 $G(x_{n-1}, x_n, x_n) \leq G(x_n, x_{n+1}, x_{n+1})$

Then

 $G(x_n, x_{n+1}, x_{n+1}) \le k G(x_n, x_{n+1}, x_{n+1})$

That is

 $(1-k) G (x_n, x_{x+1}, x_{n+1}) \le 0$

Since 1 - k > 0

 $G(x_{n}, x_{n+1}, x_{n+1}) = 0$

implies $x_n = x_{n+1}$ which contradicts $x_n \neq x_{n+1}$ for each n. Therefore

 $G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \, G\left(x_{n\text{--}1}, x_{n}, x_{n}\right)$

Hence

 $G(x_n, x_{n+1}, x_{n+1}) \le k G(x_{n-1}, x_n, x_n)$ for every n

Therefore

 $G(x_n, x_{n+1}, x_{n+1}) \le k^n G(x_0, x_1, x_1)$

Let n > m, then

 $G(x_m, x_n, x_n) \leq G(x_m, x_{m+1}, x_{m+1}) + \dots + G(x_{n-1}, x_n, x_n)$

$$\leq (k^{m} + k^{m+1} + \dots + k^{n-1}) G(x_0, x_1, x_1)$$

$$\leq \frac{k^{m}}{1-k} G(x_{0}, x_{1}, x_{1})$$

Let c > 0, then there is a $\delta > 0$ such that $c + N_{\delta}(0) \subseteq P$ where $N_{\delta}(0) = \{y \in E : ||y|| < \delta\}$. Since k < 1 there is a positive integer N such that $\left\| \frac{k^m}{1-k} G(x_0, x_1, x_1) \right\| \le \delta$ for every $m \ge N$.

Therefore

$$\frac{k^{m}}{1-k} G(x_{0}, x_{1}, x_{1}) \in N_{\delta}(0)$$

Hence

$$\frac{\mathbf{k}^{\mathsf{m}}}{-\mathbf{k}} \operatorname{G}(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{1}) \in \operatorname{N}_{\delta}(0)$$

Therefore

$$c - \frac{k^{m}}{1-k} G(x_0, x_1, x_1) \in c + N_{\delta}(0) \subseteq P$$

That is

$$\frac{k^{m}}{1-k} G(x_{0}, x_{1}, x_{1}) \leq c \text{ for } m \geq N$$

Hence by (3)
$$G(x_n, x_m, x_l) \le c n, m \ge N$$

Therefore $\{x_n\}$ is a Cauchy sequence in X.

Since X is complete there is an $z \in X$ such that $\{x_n\}$ converges to z.

Now we shall prove z is a fixed point of T. We have

 $G(x_{n+1}, Tz, Tz) \leq k \{G(x_n, x_{n+1}, x_{n+1}) \lor G(z, Tz, Tz)\}$

If $G(x_n, x_{n+1}, x_{n+1}) \le G(z, Tz, Tz)$

Then $G\left(x_{n+1},Tz,Tz\right)\,\leq\,k\,G\left(z,Tz,Tz\right)$

Letting $n \rightarrow \infty$, we get

$$G\left(z,\,Tz,\,Tz\right)\ \leq\ k\ G\left(z,\,Tz,\,Tz\right)$$

That is $(1-k) \operatorname{G}(z, \operatorname{Tz}, \operatorname{Tz}) \leq 0$

But 1 - k > 0. Therefore G (z, Tz, Tz) = 0. Hence Tz = z. If

a (

$$G(z, Tz, Tz) \leq G(x_n, x_{n+1}, x_{n+1})$$

Then

$$G(x_{n+1}, Tz, Tz) \leq k G(x_n, x_{n+1}, x_{n+1})$$

Letting $n \rightarrow \infty$ we get

$$G(z, Tz, Tz) \leq k G(z, z, z) = 0$$

which implies G(z, Tz, Tz) = 0, hence Tz = z. Therefore z is a fixed point of T.

Next we shall prove the fixed point is unique. Let 'z' be another fixed point of T. So Tz' = z'. We have

$$G(z, z', z') = G(Tz, Tz', Tz')$$

$$\leq k \{G(z, Tz, Tz) \lor G(z', Tz', Tz') \}$$

$$= k \{G(z, z, z) \lor G(z', z', z') \}$$

$$G(z, z', z')=0$$

Which implies z = z'. Hence the theorem. © 2011, RJPA. All Rights Reserved

Theorem: 3.2 Let (X, G) be a complete G – cone metric space, and T: $X \rightarrow X$ be a mapping satisfying

$$G(Tx, Ty, Ty) \le k \{G(x, Ty, Ty) \lor G(y, Tx, Tx) \lor G(y, Ty, Ty)\}$$
(4)

For all x, $y \in X$, $k \in [0, \frac{1}{2}]$. Then T has a unique fixed point.

Proof: $G(Tx, Ty, Ty) \le \{G(x, Ty, Ty) \lor G(y, Tx, Tx) \lor G(y, Ty, Ty)\}$

Therefore

$$G(Tx, Ty, Ty) \le k G(x, Ty, Ty)$$
(5)

Or
$$G(Tx, Ty, Ty) \le k G(y, Tx, Tx)$$
 (6)

Or
$$G(Tx, Ty, Ty) \le k G(y, Ty, Ty)$$
 (7)

Let x_0 be an arbitrary element in X. Define a sequence $\{x_n\}$ in X as follows $x_1 = Tx_0$, $x_2 = Tx_1 = T^2x_0$,

 $x_n = Tx_{n-1} = T^n x_0$. If $x_n = x_{n+1}$ for some n, then T has a fixed point. Assume $x_n \neq x_{n+1}$ for each n. By (5).

 $G(x_n, x_{n+1}, x_{n+1}) \leq k G(x_{n-1}, x_{n+1}, x_{n+1})$

We have

$$G(x_{n-1}, x_{n+1}, x_{n+1}) \leq G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1})$$

Therefore

$$G(x_{n}, x_{n+1}, x_{n+1}) \leq k G(x_{n-1}, x_{n}, x_{n}) + k G(x_{n}, x_{n+1}, x_{n+1})$$

That is

$$(1-k) G (x_n, x_{n+1}, x_{n+1}) \le k G (x_{n-1}, x_n, x_n)$$

$$G (x_n, x_{n+1}, x_{n+1}) \le \frac{k}{1-k} G (x_{n-1}, x_n, x_n)$$
Let $p = \frac{k}{1-k} < 1$ since $k < \frac{1}{2}$. Hence

 $G(x_n, x_{n+1}, x_{n+1}) \le p G(x_{n-1}, x_n, x_n)$ for every n

So

$$G(x_n, x_{n+1}, x_{n+1}) \le p^n G(x_0, x_1, x_1)$$

Let n > m

$$G(x_{n}, x_{n+1}, x_{n+1}) \leq G(x_{m}, x_{m+1}, x_{m+1}) + \dots + G(x_{n+1}, x_{n}, x_{n})$$

$$\leq (p^{m} + p^{m+1} + \dots + p^{n+1}) G(x_{0}, x_{1}, x_{1})$$

$$\leq \frac{p^{m}}{1-p} G(x_{0}, x_{1}, x_{1})$$
(8)

Let $c \ge 0$, then there is a $\delta > 0$ such that $c + N_{\delta}(0) \subseteq P$. Since P < 1 for $\delta > 0$, there is a positive integer N such that $\left\|\frac{p^{m}}{1-p}G(x_{0}, x_{1}, x_{1})\right\| < \delta$ for $m \ge N$. Hence $\left\|-\frac{p^{m}}{1-p}G(x_{0}, x_{1}, x_{1})\right\| < \delta$ for $m \ge N$. Therefore $c - \frac{p^{m}}{1-p}G(x_{0}, x_{1}, x_{1}) \in P$. That is $\frac{p^{m}}{1-p}G(x_{0}, x_{1}, x_{1}) \le c$. By (8) $G(x_{n}, x_{m}, x_{m}) \le c$ for $n \ge m$. Hence $\{x_{n}\}$ is a Cauchy sequence. But X is complete. Therefore there exist an $z \in X$ such that $x_{n} \to z$.

Now we shall prove Tz = z, we have by (5)

 $G(x_n, Tz, Tz) \leq k G(x_{n-1}, Tz, Tz)$

Letting $n \to \infty$ we get

 $G(z, Tz, Tz) \leq k G(z, Tz, Tz)$

That is

 $(1-k) \operatorname{G}(z, \operatorname{Tz}, \operatorname{Tz}) \leq 0$

But (1-k) > 0, therefore G (z, Tz, Tz) = 0. Hence Tz = z. Therefore z is a fixed point of T. To prove z is unique. If possible z' is another fixed point of T, therefore Tz' = z'. Now

$$G(z, z', z') = G(Tz, Tz', Tz') \le kG(z, Tz', Tz') = kG(z, z', z')$$

That is

Hence

$$(1-k) G(z, z', z') \le 0$$

But 1 - k > 0, hence G (z, z', z') = 0 which implies z = z'.

By (6) we have

 $G(Tx, Ty, Ty) \leq k G(y, Tx, Tx)$

$$\begin{array}{l} G \; (x_n, \, x_{n+1}, \, x_{n+1}) = k \; G \; (Tx_{n-1}, \, Tx_n, \, Tx_n) \\ & \leq \; k \; G \; (x_n, \, Tx_{n-1}, \, Tx_{n-1}) \\ & = k \; G \; (x_n, \, x_n, \, x_n) \\ & = \; 0 \end{array}$$

Therefore $x_n = x_{n+1}$ for each n. Therefore $\{x_n\}$ converges to x_0 and is a unique fixed point of T.

For case (3) we have

 $\begin{array}{l} G \; (Tx,\,Ty,\,Ty) \, \leq \, k \; G \; (y,\,Ty,\,Ty) \\ \text{Hence} \\ G \; (x_n,\,x_{n+1},\,x_{n+1}) \, \leq \, G \; (x_n,\,x_{n+1},\,x_{n+1}) \\ \text{That is} \end{array}$

 $(1-k) G (x_n, x_{n+1}, x_{n+1}) \le 0$

Since 1-k > 0, G (x, x, x) = 0 which implies $x_n = x_{n+1}$ for each n. Hence $\{x_n\}$ converges to x_0 and x_0 is a fixed point of T. Hence the theorem.

Corollary: 3.1 Let (X, G) be a complete G – cone metric space and let T: X \rightarrow X be a mapping satisfying G (Tx, Ty, Tz) \leq k \vee {G(x, Ty, Ty), G(x, Tz, Tz), G(y, Tx, Tx) G(y, Tz, Tz), G(z, Tx, Tx), G(z, Ty, Ty)} (9)

For all x, y, $z \in X$, where $k \in [0, 1)$. Then T has a unique fixed point.

Proof: Put z = y in (9) we get

 $G(Tx, Ty, Ty) \le k \lor \{G(x, Ty, Ty), G(y, Tx, Tx), G(y, Ty, Ty)\}$ (10)

Hence by the theorem (2) T has a unique fixed point.

Corollary: 3.2 Let (X, G) be a complete G – cone metric space and let $T: X \to X$ be a mapping satisfying

$$G (T^{m}x, T^{m}y, T^{m}z) \leq k \vee \{G (x, T^{m}y, T^{m}y), G (x, Tz, T^{m}z), G (y, T^{m}x, Tx), G (y, T^{m}z, T^{m}z), G (z, T^{m}x, T^{m}x), G (z, T^{m}y, T^{m}y)$$
(11)

For all x, y, $z \in X$, for some $m \in N$, $k \in [0, 1)$. Then T has a unique fixed point.

Proof: Let y = z, then (11) becomes

$$G(T^{m}x, T^{m}y, T^{m}y) \le k \lor \{G(x, T^{m}y, T^{m}y), G(y, T^{m}x, T^{m}x), G(y, T^{m}y, T^{m}y)\}$$
(12)

By theorem (2) T^m has a unique fixed point z. Again $T^m(Tz) = T^{m+1} z = T(T^m z)$. Therefore Tz is also a fixed point of T. But fixed point is unique. Therefore Tz = z. Hence T has a unique fixed point.

REFERENCES:

- M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric space, J. Math. Anal. Appl. 341, 2008, pp 416-420.
- [2] K. Deimling, Non linear functional analysis, Springer Verlag, 1985.
- [3] Di Bari, and Vetro P, φ- pairs and common fixed points in cone metric spaces, Rend. Cric. Mat. Palermo 57, 2008, pp 279 285.
- [4] Hicks. T.L, and Rhoades. B.E., Fixed point theory in symmetric space with applications to probabilistic spaces, Nonlinear Analysis 36, 1999, pp 331-344.
- [5] L.G. Huang, X. Zhang, Cone metric space and fixed point theorems, Math. Anal. Appl. 332 (2), 2007, pp 1468-1476.
- [6] Ismat Beg, Mujahid Abbas, Talat Nazir, Generalised Cone Metric space, The journal of Nonlinear Science and Applications 3(1), 2010, pp 21-31.
- [7] D. Ilic and V. Rakoevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2), 2008, pp 876 – 882.
- [8] Z. Mustafa and B. Sims, A new approach to Generalised Metric Space. J. Nonlinear and Convex Anal. 7(2), 2006, pp 286 – 297.
- [9] Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone Metric space and Fixed point Theorems of contractive mappings". J. Math. Anal. Appl. 345, 2008, pp 719-724.
- [10] I. Sahin and M. Telci, Fixed points of contractive mapping on complete cone metric spaces, Hacettepe Journal of Mathematics and Statistics, 38 (1), 2009, pp 59-67.
